Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulating excitability of peripheral afferents: emerging ion channel targets

Abstract

The transmission and processing of pain signals relies critically on the activities of ion channels that are expressed in afferent pain fibers. This includes voltage-gated channels, as well as background (or leak) channels that collectively regulate resting membrane potential and action potential firing properties. Dysregulated ion channel expression in response to nerve injury and inflammation results in enhanced neuronal excitability that underlies chronic neuropathic and inflammatory pain. Pharmacological modulators of ion channels, particularly those that target channels on peripheral neurons, are being pursued as possible analgesics. Over the past few years, a number of different types of ion channels have been implicated in afferent pain signaling. Here we give an overview of recent advances on sodium, calcium, potassium and chloride channels that are emerging as especially attractive targets for the treatment of pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key ion channels in the primary afferent pain pathway.
Figure 2: The G856D mutation in NaV1.7 that segregates with disease in a family with painful neuropathy increases neuronal excitability.
Figure 3: Atomic-level structural modeling and thermodynamic analyses predict that the S241T mutation should increase sensitivity of the NaV1.7 channel to carbamazepine.
Figure 4: Examples of mechanisms of nerve injury–induced inhibition of potassium channel expression.
Figure 5: Possible mechanisms by which T-type channels contribute to afferent fiber activity.

Similar content being viewed by others

References

  1. Bourinet, E. et al. Calcium permeable ion channels in pain signaling. Physiol. Rev. 94, 81–140 (2014).

    CAS  PubMed  Google Scholar 

  2. Waxman, S.G. et al. Sodium channels and pain. Proc. Natl. Acad. Sci. USA 96, 7635–7639 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dib-Hajj, S.D. et al. Gain-of-function mutation in NaV1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128, 1847–1854 (2005).

    CAS  PubMed  Google Scholar 

  4. Faber, C.G. et al. Gain of function Nav1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71, 26–39 (2012).

    CAS  PubMed  Google Scholar 

  5. Faber, C.G. et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc. Natl. Acad. Sci. USA 109, 19444–19449 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Okuse, K. et al. Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature 417, 653–656 (2002).

    CAS  PubMed  Google Scholar 

  7. Toledo-Aral, J.J. et al. Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc. Natl. Acad. Sci. USA 94, 1527–1532 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rush, A.M. et al. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proc. Natl. Acad. Sci. USA 103, 8245–8250 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dib-Hajj, S.D. et al. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).

    CAS  PubMed  Google Scholar 

  10. Nassar, M.A. et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl. Acad. Sci. USA 101, 12706–12711 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shields, S.D. et al. Sodium channel Nav1.7 is essential for lowering heat pain threshold after burn injury. J. Neurosci. 32, 10819–10832 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Black, J.A. et al. Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann. Neurol. 64, 644–653 (2008).

    PubMed  Google Scholar 

  13. Yang, Y. et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 41, 171–174 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cummins, T.R., Dib-Hajj, S.D. & Waxman, S.G. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J. Neurosci. 24, 8232–8236 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fertleman, C.R. et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774 (2006).

    CAS  PubMed  Google Scholar 

  16. Cox, J.J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Estacion, M. et al. A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann. Neurol. 66, 862–866 (2009).

    CAS  PubMed  Google Scholar 

  18. Reimann, F. et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc. Natl. Acad. Sci. USA 107, 5148–5153 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldberg, Y.P. et al. Treatment of Nav1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain 153, 80–85 (2012).

    CAS  PubMed  Google Scholar 

  20. Yang, Y. et al. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a NaV1.7 mutant channel. Nat. Commun. 3, 1186 (2012).

    PubMed  Google Scholar 

  21. Akopian, A.N., Sivilotti, L. & Wood, J.N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    CAS  PubMed  Google Scholar 

  22. Renganathan, M., Cummins, T.R. & Waxman, S.G. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 86, 629–640 (2001).

    CAS  PubMed  Google Scholar 

  23. Binshtok, A.M. et al. Nociceptors are interleukin-1β sensors. J. Neurosci. 28, 14062–14073 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hudmon, A. et al. Phosphorylation of sodium channel Nav1.8 by p38 mitogen-activated protein kinase increases current density in dorsal root ganglion neurons. J. Neurosci. 28, 3190–3201 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Akopian, A.N. et al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat. Neurosci. 2, 541–548 (1999).

    CAS  PubMed  Google Scholar 

  26. Jarvis, M.F. et al. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc. Natl. Acad. Sci. USA 104, 8520–8525 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lai, J. et al. Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain 95, 143–152 (2002).

    CAS  PubMed  Google Scholar 

  28. Dib-Hajj, S. et al. NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci. 25, 253–259 (2002).

    CAS  PubMed  Google Scholar 

  29. Amaya, F. et al. The voltage-gated sodium channel Nav1.9 is an effector of peripheral inflammatory pain hypersensitivity. J. Neurosci. 26, 12852–12860 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Priest, B.T. et al. Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc. Natl. Acad. Sci. USA 102, 9382–9387 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Craner, M.J. et al. Changes of sodium channel expression in experimental painful diabetic neuropathy. Ann. Neurol. 52, 786–792 (2002).

    CAS  PubMed  Google Scholar 

  32. Cummins, T.R. et al. Nav1.3 sodium channels: rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci. 21, 5952–5961 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Black, J.A. et al. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J. Neurophysiol. 82, 2776–2785 (1999).

    CAS  PubMed  Google Scholar 

  34. Waxman, S.G., Kocsis, J.D. & Black, J.A. Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J. Neurophysiol. 72, 466–470 (1994).

    CAS  PubMed  Google Scholar 

  35. Hains, B.C. et al. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J. Neurosci. 24, 4832–4839 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lindia, J.A. et al. Relationship between sodium channel NaV1.3 expression and neuropathic pain behavior in rats. Pain 117, 145–153 (2005).

    CAS  PubMed  Google Scholar 

  37. Samad, O.A. et al. Virus-mediated shRNA knockdown of Nav1.3 in rat dorsal root ganglion attenuates nerve injury-induced neuropathic pain. Mol. Ther. 21, 49–56 (2013).

    CAS  PubMed  Google Scholar 

  38. Weiss, J. et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472, 186–190 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Maljevic, S. & Lerche, H. Potassium channels: a review of broadening therapeutic possibilities for neurological diseases. J. Neurol. 260, 2201–2211 (2013).

    CAS  PubMed  Google Scholar 

  40. Nockemann, D. et al. The K channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia. EMBO Mol. Med. 5, 1263–1277 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao, X.H. et al. Reduction in voltage-gated K+ channel activity in primary sensory neurons in painful diabetic neuropathy: role of brain-derived neurotrophic factor. J. Neurochem. 114, 1460–1475 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rasband, M.N. et al. Distinct potassium channels on pain-sensing neurons. Proc. Natl. Acad. Sci. USA 98, 13373–13378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsantoulas, C. et al. Sensory neuron downregulation of the Kv9.1 potassium channel subunit mediates neuropathic pain following nerve injury. J. Neurosci. 32, 17502–17513 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng, Q. et al. Suppression of KCNQ/M (Kv7) potassium channels in dorsal root ganglion neurons contributes to the development of bone cancer pain in a rat model. Pain 154, 434–448 (2013).

    CAS  PubMed  Google Scholar 

  45. Zhao, X. et al. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat. Neurosci. 16, 1024–1031 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hao, J. et al. Kv1.1 channels act as mechanical brake in the senses of touch and pain. Neuron 77, 899–914 (2013).

    CAS  PubMed  Google Scholar 

  47. Xu, W. et al. Activation of voltage-gated KCNQ/Kv7 channels by anticonvulsant retigabine attenuates mechanical allodynia of inflammatory temporomandibular joint in rats. Mol. Pain 6, 49 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Klein, C.J. et al. Chronic pain as a manifestation of potassium channel-complex autoimmunity. Neurology 79, 1136–1144 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Honoré, E. The neuronal background K2P channels: focus on TREK1. Nat. Rev. Neurosci. 8, 251–261 (2007).

    PubMed  Google Scholar 

  50. Marsh, B. et al. Leak K+ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol. Cell. Neurosci. 49, 375–386 (2012).

    CAS  PubMed  Google Scholar 

  51. Kang, D. & Kim, D. TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am. J. Physiol. Cell Physiol. 291, C138–C146 (2006).

    CAS  PubMed  Google Scholar 

  52. Dobler, T. et al. TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J. Physiol. (Lond.) 585, 867–879 (2007).

    CAS  Google Scholar 

  53. Tulleuda, A. et al. TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol. Pain 7, 30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Alloui, A. et al. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 25, 2368–2376 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Noël, J. et al. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 28, 1308–1318 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Kang, D., Choe, C. & Kim, D. Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK. J. Physiol. (Lond.) 564, 103–116 (2005).

    CAS  Google Scholar 

  57. La, J.H. & Gebhart, G.F. Colitis decreases mechanosensitive K2P channel expression and function in mouse colon sensory neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G165–G174 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cohen, A. et al. Pain-associated signals, acidosis and lysophosphatidic acid, modulate the neuronal K2P2.1 channel. Mol. Cell. Neurosci. 40, 382–389 (2009).

    CAS  PubMed  Google Scholar 

  59. Zhou, J. et al. Intrathecal TRESK gene recombinant adenovirus attenuates spared nerve injury-induced neuropathic pain in rats. Neuroreport 24, 131–136 (2013).

    CAS  PubMed  Google Scholar 

  60. Bagriantsev, S.N. et al. A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K channels. ACS Chem. Biol. 8, 1841–1851 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Berkefeld, H., Fakler, B. & Schulte, U. Ca2+-activated K+ channels: from protein complexes to function. Physiol. Rev. 90, 1437–1459 (2010).

    CAS  PubMed  Google Scholar 

  62. Mongan, L.C. et al. The distribution of small and intermediate conductance calcium-activated potassium channels in the rat sensory nervous system. Neuroscience 131, 161–175 (2005).

    CAS  PubMed  Google Scholar 

  63. Li, W. et al. Characterization of voltage-and Ca2+-activated K+ channels in rat dorsal root ganglion neurons. J. Cell. Physiol. 212, 348–357 (2007).

    CAS  PubMed  Google Scholar 

  64. Bahia, P.K. et al. A functional role for small-conductance calcium-activated potassium channels in sensory pathways including nociceptive processes. J. Neurosci. 25, 3489–3498 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, X.L. et al. BKCa currents are enriched in a subpopulation of adult rat cutaneous nociceptive dorsal root ganglion neurons. Eur. J. Neurosci. 31, 450–462 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Boettger, M.K. et al. Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Brain 125, 252–263 (2002).

    CAS  PubMed  Google Scholar 

  67. Chen, S.R., Cai, Y.Q. & Pan, H.L. Plasticity and emerging role of BKCa channels in nociceptive control in neuropathic pain. J. Neurochem. 110, 352–362 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cao, X.H. et al. Nerve injury increases brain-derived neurotrophic factor levels to suppress BK channel activity in primary sensory neurons. J. Neurochem. 121, 944–953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhattacharjee, A. & Kaczmarek, L.K. For K+ channels, Na+ is the new Ca2+. Trends Neurosci. 28, 422–428 (2005).

    CAS  PubMed  Google Scholar 

  70. Gao, S.B. et al. Slack and Slick KNa channels are required for the depolarizing afterpotential of acutely isolated, medium diameter rat dorsal root ganglion neurons. Acta Pharmacol. Sin. 29, 899–905 (2008).

    CAS  PubMed  Google Scholar 

  71. Nuwer, M.O., Picchione, K.E. & Bhattacharjee, A. PKA-induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability. J. Neurosci. 30, 14165–14172 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Huang, F. et al. TMEM16C facilitates Na-activated K currents in rat sensory neurons and regulates pain processing. Nat. Neurosci. 16, 1284–1290 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bourinet, E. et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. 24, 315–324 (2005).

    CAS  PubMed  Google Scholar 

  74. Jagodic, M.M. et al. Cell-specific alterations of T-type calcium current in painful diabetic neuropathy enhance excitability of sensory neurons. J. Neurosci. 27, 3305–3316 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Francois, A. et al. State-dependent properties of a new T-type calcium channel blocker enhance CaV3.2 selectivity and support analgesic effects. Pain 154, 283–293 (2013).

    CAS  PubMed  Google Scholar 

  76. Hildebrand, M.E. et al. A novel slow-inactivation-specific ion channel modulator attenuates neuropathic pain. Pain 152, 833–843 (2011).

    CAS  PubMed  Google Scholar 

  77. Heppenstall, P.A. & Lewin, G.R. A role for T-type Ca2+ channels in mechanosensation. Cell Calcium 40, 165–174 (2006).

    CAS  PubMed  Google Scholar 

  78. Rose, K.E. et al. Immunohistological demonstration of Ca3.2 T-type voltage-gated calcium channel expression in soma of dorsal root ganglion neurons and peripheral axons of rat and mouse. Neuroscience 250, 263–274 (2013).

    CAS  PubMed  Google Scholar 

  79. Jacus, M.O. et al. Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J. Neurosci. 32, 9374–9382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Weiss, N. et al. A Cav3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J. Biol. Chem. 287, 2810–2818 (2012).

    CAS  PubMed  Google Scholar 

  81. Tringham, E. et al. T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures. Sci. Transl. Med. 4, 121ra19 (2012).

    PubMed  Google Scholar 

  82. Hartzell, C., Putzier, I. & Arreola, J. Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719–758 (2005).

    CAS  PubMed  Google Scholar 

  83. Kenyon, J.L. The reversal potential of Ca2+-activated Cl currents indicates that chick sensory neurons accumulate intracellular Cl. Neurosci. Lett. 296, 9–12 (2000).

    CAS  PubMed  Google Scholar 

  84. André, S. et al. Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. J. Neurophysiol. 90, 3764–3773 (2003).

    PubMed  Google Scholar 

  85. Liu, B. et al. The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl channels. J. Clin. Invest. 120, 1240–1252 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cho, H. et al. The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat. Neurosci. 15, 1015–1021 (2012).

    CAS  PubMed  Google Scholar 

  87. Benarroch, E.E. HCN channels: function and clinical implications. Neurology 80, 304–310 (2013).

    PubMed  Google Scholar 

  88. Matsuyoshi, H. et al. Expression of hyperpolarization-activated cyclic nucleotide-gated cation channels in rat dorsal root ganglion neurons innervating urinary bladder. Brain Res. 1119, 115–123 (2006).

    CAS  PubMed  Google Scholar 

  89. Wan, Y. Involvement of hyperpolarization-activated, cyclic nucleotide-gated cation channels in dorsal root ganglion in neuropathic pain. Sheng Li Xue Bao 60, 579–580 (2008).

    CAS  PubMed  Google Scholar 

  90. Papp, I., Hollo, K. & Antal, M. Plasticity of hyperpolarization-activated and cyclic nucleotid-gated cation channel subunit 2 expression in the spinal dorsal horn in inflammatory pain. Eur. J. Neurosci. 32, 1193–1201 (2010).

    PubMed  Google Scholar 

  91. Weng, X. et al. Chronic inflammatory pain is associated with increased excitability and hyperpolarization-activated current (Ih) in C- but not Aδ-nociceptors. Pain 153, 900–914 (2012).

    CAS  PubMed  Google Scholar 

  92. Acosta, C. et al. HCN1 and HCN2 in rat DRG neurons: levels in nociceptors and non-nociceptors, NT3-dependence and influence of CFA-induced skin inflammation on HCN2 and NT3 expression. PLoS ONE 7, e50442 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Emery, E.C. et al. HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science 333, 1462–1466 (2011).

    CAS  PubMed  Google Scholar 

  94. Descoeur, J. et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med. 3, 266–278 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wickenden, A.D., Maher, M.P. & Chaplan, S.R. HCN pacemaker channels and pain: a drug discovery perspective. Curr. Pharm. Des. 15, 2149–2168 (2009).

    CAS  PubMed  Google Scholar 

  96. Lafrenière, R.G. et al. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat. Med. 16, 1157–1160 (2010).

    PubMed  Google Scholar 

  97. Rehak, R. et al. Low voltage activation of KCa1.1 current by Cav3-KCa1.1 complexes. PLoS ONE 8, e61844 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kuisle, M. et al. Functional stabilization of weakened thalamic pacemaker channel regulation in rat absence epilepsy. J. Physiol. (Lond.) 575, 83–100 (2006).

    CAS  Google Scholar 

  99. Liu, X.J. et al. Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat. Med. 14, 1325–1332 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hoeijmakers, J.G. et al. Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. Brain 135, 345–358 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Midgley for editorial assistance. G.W.Z. is supported by a Canada Research Chair award, an Alberta Innovates – Health Solutions Scientist award and grants from the Canadian Institutes of Health Research. S.G.W. is supported by the Bridget M. Flaherty Professorship in Neurology, Neurobiology and Pharmacology at Yale and is supported by grants from the Rehabilitation Research Service and Biomedical Laboratory Research Service, US Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W Zamponi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waxman, S., Zamponi, G. Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci 17, 153–163 (2014). https://doi.org/10.1038/nn.3602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3602

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing