Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value

This article has been updated

Abstract

In changing environments, animals must adaptively select actions to achieve their goals. In tasks involving goal-directed action selection, striatal neural activity has been shown to represent the value of competing actions. Striatal representations of action value could potentially bias responses toward actions of higher value. However, no study to date has demonstrated the direct effect of distinct striatal pathways in goal-directed action selection. We found that transient optogenetic stimulation of dorsal striatal dopamine D1 and D2 receptor–expressing neurons during decision-making in mice introduced opposing biases in the distribution of choices. The effect of stimulation on choice was dependent on recent reward history and mimicked an additive change in the action value. Although stimulation before and during movement initiation produced a robust bias in choice behavior, this bias was substantially diminished when stimulation was delayed after response initiation. Together, our data suggest that striatal activity is involved in goal-directed action selection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the probabilistic switching task and mouse performance.
Figure 2: Modeling action value and choice.
Figure 3: Optical stimulation induces opposing biases in a mouse's choice.
Figure 4: Dorsal striatal D1R-expressing neuron activation mimics an increase in relative action value for contralateral choice.
Figure 5: Dorsal striatal D2R-expressing neuron activation mimics a decrease in relative action value for contralateral choice.
Figure 6: Comparison of D1R- and D2R-expressing neuron stimulation.
Figure 7: Significant bias was induced by stimulation limited to a 50-ms period before a Go cue.
Figure 8: Bias induced by stimulation diminished when stimulation was delayed 150 ms after a Go cue.

Similar content being viewed by others

Change history

  • 30 August 2012

    In the version of this article initially published, a reference was not included in Online Methods for the BAC transgenic mice expressing Cre recombinase. The reference is Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Lauwereyns, J., Watanabe, K., Coe, B. & Hikosaka, O. A neural correlate of response bias in monkey caudate nucleus. Nature 418, 413–417 (2002).

    Article  CAS  Google Scholar 

  2. Cromwell, H.C. & Schultz, W. Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. J. Neurophysiol. 89, 2823–2838 (2003).

    Article  Google Scholar 

  3. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  4. Lau, B. & Glimcher, P.W. Value representations in the primate striatum during matching behavior. Neuron 58, 451–463 (2008).

    Article  CAS  Google Scholar 

  5. Barnes, T.D., Kubota, Y., Hu, D., Jin, D.Z. & Graybiel, A.M. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437, 1158–1161 (2005).

    Article  CAS  Google Scholar 

  6. Pasupathy, A. & Miller, E.K. Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433, 873–876 (2005).

    Article  CAS  Google Scholar 

  7. Balleine, B.W., Delgado, M.R. & Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci. 27, 8161–8165 (2007).

    Article  CAS  Google Scholar 

  8. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    CAS  Google Scholar 

  9. Gerfen, C.R. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 15, 133–139 (1992).

    Article  CAS  Google Scholar 

  10. DeLong, M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    Article  CAS  Google Scholar 

  11. Kravitz, A.V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  Google Scholar 

  12. Lobo, M.K. & Nestler, E.J. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front. Neuroanat. 5, 41 (2011).

    Article  Google Scholar 

  13. Kreitzer, A.C. & Berke, J.D. Investigating striatal function through cell type–specific manipulations. Neuroscience 198, 19–26 (2011).

    Article  CAS  Google Scholar 

  14. Kreitzer, A.C. & Malenka, R.C. Striatal plasticity and basal ganglia circuit function. Neuron 60, 543–554 (2008).

    Article  CAS  Google Scholar 

  15. Shuen, J.A., Chen, M., Gloss, B. & Calakos, N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J. Neurosci. 28, 2681–2685 (2008).

    Article  CAS  Google Scholar 

  16. Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol. 95, 567–584 (2006).

    Article  Google Scholar 

  17. Isoda, M. & Hikosaka, O. Cortico-basal ganglia mechanisms for overcoming innate, habitual and motivational behaviors. Eur. J. Neurosci. 33, 2058–2069 (2011).

    Article  Google Scholar 

  18. Brainard, M.S. & Doupe, A.J. Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404, 762–766 (2000).

    Article  CAS  Google Scholar 

  19. Turner, R.S. & Desmurget, M. Basal ganglia contributions to motor control: a vigorous tutor. Curr. Opin. Neurobiol. 20, 704–716 (2010).

    Article  CAS  Google Scholar 

  20. Desmurget, M. & Turner, R.S. Motor sequences and the basal ganglia: kinematics, not habits. J. Neurosci. 30, 7685–7690 (2010).

    Article  CAS  Google Scholar 

  21. Schwarting, R.K. & Huston, J.P. The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog. Neurobiol. 50, 275–331 (1996).

    Article  CAS  Google Scholar 

  22. Thorn, C.A., Atallah, H., Howe, M. & Graybiel, A.M. Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning. Neuron 66, 781–795 (2010).

    Article  CAS  Google Scholar 

  23. Kubota, Y. et al. Stable encoding of task structure coexists with flexible coding of task events in sensorimotor striatum. J. Neurophysiol. 102, 2142–2160 (2009).

    Article  Google Scholar 

  24. Kim, H., Sul, J.H., Huh, N., Lee, D. & Jung, M.W. Role of striatum in updating values of chosen actions. J. Neurosci. 29, 14701–14712 (2009).

    Article  CAS  Google Scholar 

  25. Felsen, G. & Mainen, Z.F. Neural substrates of sensory-guided locomotor decisions in the rat superior colliculus. Neuron 60, 137–148 (2008).

    Article  CAS  Google Scholar 

  26. Grillner, S., Hellgren, J., Menard, A., Saitoh, K. & Wikstrom, M.A. Mechanisms for selection of basic motor programs–roles for the striatum and pallidum. Trends Neurosci. 28, 364–370 (2005).

    Article  CAS  Google Scholar 

  27. Grillner, S., Wallen, P., Saitoh, K., Kozlov, A. & Robertson, B. Neural bases of goal-directed locomotion in vertebrates–an overview. Brain Res. Rev. 57, 2–12 (2008).

    Article  Google Scholar 

  28. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat. Rev. Neurosci. 6, 363–375 (2005).

    Article  CAS  Google Scholar 

  29. Gold, J.I. & Shadlen, M.N. The neural basis of decision making. Annu. Rev. Neurosci. 30, 535–574 (2007).

    Article  CAS  Google Scholar 

  30. Lau, B. & Glimcher, P.W. Dynamic response-by-response models of matching behavior in rhesus monkeys. J. Exp. Anal. Behav. 84, 555–579 (2005).

    Article  Google Scholar 

  31. Sutton, R.S. & Barto, A.G. Reinforcement Learning: an Introduction (MIT Press, Cambridge, Massachusetts, 1998).

  32. Kawaguchi, Y., Wilson, C.J., Augood, S.J. & Emson, P.C. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci. 18, 527–535 (1995).

    Article  CAS  Google Scholar 

  33. Rymar, V.V., Sasseville, R., Luk, K.C. & Sadikot, A.F. Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum. J. Comp. Neurol. 469, 325–339 (2004).

    Article  CAS  Google Scholar 

  34. Salzman, C.D., Britten, K.H. & Newsome, W.T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990).

    Article  CAS  Google Scholar 

  35. Jin, X. & Costa, R.M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

    Article  CAS  Google Scholar 

  36. Watanabe, K. & Hikosaka, O. Immediate changes in anticipatory activity of caudate neurons associated with reversal of position-reward contingency. J. Neurophysiol. 94, 1879–1887 (2005).

    Article  Google Scholar 

  37. Redgrave, P., Prescott, T.J. & Gurney, K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999).

    Article  CAS  Google Scholar 

  38. Mink, J.W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    Article  CAS  Google Scholar 

  39. Jiang, H., Stein, B.E. & McHaffie, J.G. Opposing basal ganglia processes shape midbrain visuomotor activity bilaterally. Nature 423, 982–986 (2003).

    Article  CAS  Google Scholar 

  40. Rangel, A., Camerer, C. & Montague, P.R. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556 (2008).

    Article  CAS  Google Scholar 

  41. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  Google Scholar 

  42. Kimchi, E.Y. & Laubach, M. The dorsomedial striatum reflects response bias during learning. J. Neurosci. 29, 14891–14902 (2009).

    Article  CAS  Google Scholar 

  43. Castane, A., Theobald, D.E. & Robbins, T.W. Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats. Behav. Brain Res. 210, 74–83 (2010).

    Article  Google Scholar 

  44. Ragozzino, M.E. The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann. NY Acad. Sci. 1121, 355–375 (2007).

    Article  Google Scholar 

  45. Kravitz, A.V., Tye, L.D. & Kreitzer, A.C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818 (2012).

    Article  CAS  Google Scholar 

  46. Ikeda, T. & Hikosaka, O. Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron 39, 693–700 (2003).

    Article  CAS  Google Scholar 

  47. Lo, C.C. & Wang, X.J. Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nat. Neurosci. 9, 956–963 (2006).

    Article  CAS  Google Scholar 

  48. Kable, J.W. & Glimcher, P.W. The neurobiology of decision: consensus and controversy. Neuron 63, 733–745 (2009).

    Article  CAS  Google Scholar 

  49. Redgrave, P., Prescott, T.J. & Gurney, K. Is the short-latency dopamine response too short to signal reward error? Trends Neurosci. 22, 146–151 (1999).

    Article  CAS  Google Scholar 

  50. Hikosaka, O. & Isoda, M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn. Sci. 14, 154–161 (2010).

    Article  Google Scholar 

  51. Sparta, D.R. et al. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat. Protoc. 7, 12–23 (2012).

    Article  CAS  Google Scholar 

  52. Ariano, M.A. et al. Striatal potassium channel dysfunction in Huntington's disease transgenic mice. J. Neurophysiol. 93, 2565–2574 (2005).

    Article  CAS  Google Scholar 

  53. Gong, S. et al. Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J. Neurosci. 27, 9817–9823 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Stuber, F. Ambroggi, D. Niell, K. Berger, C. Wu and H. Peckler for assistance with experiments, V. Kharazia for immunostaining and histological quantification, K. Deisseroth (Stanford University) for advice and reagents, and C. Niell for comments on the manuscript. This work was supported by the State of California, the US National Institutes of Health (1RC2NS069350; R01MH087542 and R01DA029150), and the P. Royer and K. Clayton Family.

Author information

Authors and Affiliations

Authors

Contributions

L.-H.T., A.M.L. and L.W. designed the study. L.-H.T., A.M.L. and N.B. collected behavioral data. L.-H.T. and A.M.L. analyzed and modeled data. A.M.L. and N.B. processed tissue. L.-H.T., A.M.L., L.W. and A.B. wrote the paper.

Corresponding author

Correspondence to Linda Wilbrecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 4701 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, LH., Lee, A., Benavidez, N. et al. Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15, 1281–1289 (2012). https://doi.org/10.1038/nn.3188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing