Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons

Abstract

Synaptic transmission from a neuron to its target cells occurs via neurotransmitter release from dozens to thousands of presynaptic release sites whose strength and plasticity can vary considerably. We report an in vivo imaging method that monitors real-time synaptic transmission simultaneously at many release sites with quantal resolution. We applied this method to the model glutamatergic system of the Drosophila melanogaster larval neuromuscular junction. We find that, under basal conditions, about half of release sites have a very low release probability, but these are interspersed with sites with as much as a 50-fold higher probability. Paired-pulse stimulation depresses high-probability sites, facilitates low-probability sites, and recruits previously silent sites. Mutation of the small GTPase Rab3 substantially increases release probability but still leaves about half of the sites silent. Our findings suggest that basal synaptic strength and short-term plasticity are regulated at the level of release probability at individual sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postsynaptically targeted GCaMP2 (SynapGCaMP2) reports single-action-potential, single-release-site Ca2+ influx.
Figure 2: SynapGCaMP2 imaging of sucrose-induced spontaneous release events.
Figure 3: Stimulation-evoked responses have same ΔF/F range of values as spontaneous events.
Figure 4: Comparison of release probabilities to locations of active zones in the NMJ.
Figure 5: The distal bouton is more active than other boutons along the axonal branch.
Figure 6: The distal bouton has more spontaneous (sucrose-induced) ΔF spots than other boutons along the axonal branch.
Figure 7: Paired-pulse stimulation facilitates low-probability sites and depresses high-probability sites.
Figure 8: Transmission properties of rab3-mutant NMJs.

Similar content being viewed by others

References

  1. Atwood, H.L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3, 497–516 (2002).

    Article  CAS  Google Scholar 

  2. Pelkey, K.A. & McBain, C.J. Differential regulation at functionally divergent release sites along a common axon. Curr. Opin. Neurobiol. 17, 366–373 (2007).

    Article  CAS  Google Scholar 

  3. Branco, T. & Staras, K. The probability of neurotransmitter release: variability and feedback control at single synapses. Nat. Rev. Neurosci. 10, 373–383 (2009).

    Article  CAS  Google Scholar 

  4. Redman, S. & Walmsley, B. Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. J. Physiol. (Lond.) 343, 135–145 (1983).

    Article  CAS  Google Scholar 

  5. Rosenmund, C., Clements, J.D. & Westbrook, G.L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    Article  CAS  Google Scholar 

  6. Hessler, N.A., Shirke, A.M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

    Article  CAS  Google Scholar 

  7. Allen, C. & Stevens, C.F. An evaluation of causes for unreliability of synaptic transmission. Proc. Natl. Acad. Sci. USA 91, 10380–10383 (1994).

    Article  CAS  Google Scholar 

  8. Betz, W.J. & Bewick, G.S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203 (1992).

    Article  CAS  Google Scholar 

  9. Ryan, T.A. & Smith, S.J. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14, 983–989 (1995).

    Article  CAS  Google Scholar 

  10. Murthy, V.N., Sejnowski, T.J. & Stevens, C.F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

    Article  CAS  Google Scholar 

  11. Ryan, T.A. Presynaptic imaging techniques. Curr. Opin. Neurobiol. 11, 544–549 (2001).

    Article  CAS  Google Scholar 

  12. Murphy, T.H., Baraban, J.M., Wier, W.G. & Blatter, L.A. Visualization of quantal synaptic transmission by dendritic calcium imaging. Science 263, 529–532 (1994).

    Article  CAS  Google Scholar 

  13. Oertner, T.G., Sabatini, B.L., Nimchinsky, E.A. & Svoboda, K. Facilitation at single synapses probed with optical quantal analysis. Nat. Neurosci. 5, 657–664 (2002).

    Article  CAS  Google Scholar 

  14. Koester, H.J. & Johnston, D. Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308, 863–866 (2005).

    Article  CAS  Google Scholar 

  15. Budnik, V. & Ruiz-Cañada, C. The Fly Neuromuscular Junction: Structure and Function 2nd edn. (Elsevier Academic Press, San Diego, 2006).

  16. Schuster, C.M., Davis, G.W., Fetter, R.D. & Goodman, C.S. Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17, 641–654 (1996).

    Article  CAS  Google Scholar 

  17. Atwood, H.L., Govind, C.K. & Wu, C.F. Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J. Neurobiol. 24, 1008–1024 (1993).

    Article  CAS  Google Scholar 

  18. Geppert, M. & Sudhof, T.C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu. Rev. Neurosci. 21, 75–95 (1998).

    Article  CAS  Google Scholar 

  19. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  Google Scholar 

  20. Schlüter, O.M., Schmitz, F., Jahn, R., Rosenmund, C. & Sudhof, T.C. A complete genetic analysis of neuronal Rab3 function. J. Neurosci. 24, 6629–6637 (2004).

    Article  Google Scholar 

  21. Schlüter, O.M., Basu, J., Sudhof, T.C. & Rosenmund, C. Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity. J. Neurosci. 26, 1239–1246 (2006).

    Article  Google Scholar 

  22. Kittel, R.J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  Google Scholar 

  23. Graf, E.R., Daniels, R.W., Burgess, R.W., Schwarz, T.L. & DiAntonio, A. Rab3 dynamically controls protein composition at active zones. Neuron 64, 663–677 (2009).

    Article  CAS  Google Scholar 

  24. Tallini, Y.N. et al. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc. Natl. Acad. Sci. USA 103, 4753–4758 (2006).

    Article  CAS  Google Scholar 

  25. Hendel, T. et al. Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J. Neurosci. 28, 7399–7411 (2008).

    Article  CAS  Google Scholar 

  26. Guerrero, G. et al. Heterogeneity in synaptic transmission along a Drosophila larval motor axon. Nat. Neurosci. 8, 1188–1196 (2005).

    Article  CAS  Google Scholar 

  27. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  28. Hoang, B. & Chiba, A. Single-cell analysis of Drosophila larval neuromuscular synapses. Dev. Biol. 229, 55–70 (2001).

    Article  CAS  Google Scholar 

  29. Fouquet, W. et al. Maturation of active zone assembly by Drosophila Bruchpilot. J. Cell Biol. 186, 129–145 (2009).

    Article  CAS  Google Scholar 

  30. Lnenicka, G.A., Grizzaffi, J., Lee, B. & Rumpal, N. Ca2+ dynamics along identified synaptic terminals in Drosophila larvae. J. Neurosci. 26, 12283–12293 (2006).

    Article  CAS  Google Scholar 

  31. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  Google Scholar 

  32. Quigley, P.A., Msghina, M., Govind, C.K. & Atwood, H.L. Visible evidence for differences in synaptic effectiveness with activity-dependent vesicular uptake and release of FM1–43. J. Neurophysiol. 81, 356–370 (1999).

    Article  CAS  Google Scholar 

  33. Lnenicka, G.A. & Keshishian, H. Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. J. Neurobiol. 43, 186–197 (2000).

    Article  CAS  Google Scholar 

  34. Stevens, C.F. & Wang, Y. Facilitation and depression at single central synapses. Neuron 14, 795–802 (1995).

    Article  CAS  Google Scholar 

  35. Hanse, E. & Gustafsson, B. Quantal variability at glutamatergic synapses in area CA1 of the rat neonatal hippocampus. J. Physiol. (Lond.) 531, 467–480 (2001).

    Article  CAS  Google Scholar 

  36. Marrus, S.B. & DiAntonio, A. Preferential localization of glutamate receptors opposite sites of high presynaptic release. Curr. Biol. 14, 924–931 (2004).

    Article  CAS  Google Scholar 

  37. Branco, T., Staras, K., Darcy, K.J. & Goda, Y. Local dendritic activity sets release probability at hippocampal synapses. Neuron 59, 475–485 (2008).

    Article  CAS  Google Scholar 

  38. Prange, O. & Murphy, T.H. Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons. J. Neurosci. 19, 6427–6438 (1999).

    Article  CAS  Google Scholar 

  39. Harris, K.M. & Stevens, J.K. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  Google Scholar 

  40. Murthy, V.N., Schikorski, T., Stevens, C.F. & Zhu, Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32, 673–682 (2001).

    Article  CAS  Google Scholar 

  41. Atwood, H.L. & Wojtowicz, J.M. Silent synapses in neural plasticity: current evidence. Learn. Mem. 6, 542–571 (1999).

    Article  CAS  Google Scholar 

  42. Davis, G.W., DiAntonio, A., Petersen, S.A. & Goodman, C.S. Postsynaptic PKA controls quantal size and reveals a retrograde signal that regulates presynaptic transmitter release in Drosophila. Neuron 20, 305–315 (1998).

    Article  CAS  Google Scholar 

  43. Anderson, J.C. et al. Modular organization of adaptive colouration in flounder and cuttlefish revealed by independent component analysis. Network 14, 321–333 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.S. Zucker for helpful discussions, G. Kauwe and G. Agarwal for help generating the SynapGCaMP2 fly line, H.L. Aaron for advice on imaging and J.A. Min for help with testing fly strains. We also thank A. DiAntonio for gifts of fly strains and for the Rab3 antibody. This work was supported by US National Science Foundation grant FIBR 0623527.

Author information

Authors and Affiliations

Authors

Contributions

E.S.P. carried out experiments and data analysis. E.Y.I. supervised the project. E.S.P. and E.Y.I. wrote the manuscript.

Corresponding author

Correspondence to Ehud Y Isacoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1 and Supplementary Text (PDF 638 kb)

Supplementary Movie 1

Single action-potential evoked responses in the NMJ of Fig. 1. (MOV 71 kb)

Supplementary Movie 2

Spontaneous activity in the NMJ of Fig. 2. (MOV 547 kb)

Supplementary Movie 3

Responses to paired-pulse stimulation (NMJ of Fig. 7). (MOV 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peled, E., Isacoff, E. Optical quantal analysis of synaptic transmission in wild-type and rab3-mutant Drosophila motor axons. Nat Neurosci 14, 519–526 (2011). https://doi.org/10.1038/nn.2767

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing