Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5

An Erratum to this article was published on 01 June 2009

This article has been updated

Abstract

Although the properties and trafficking of AMPA-type glutamate receptors (AMPARs) depend critically on associated transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (γ-2), no TARP has been described that can specifically regulate the important class of calcium-permeable (CP-) AMPARs. We examined the stargazin-related protein γ-5, which is highly expressed in Bergmann glia, a cell type possessing only CP-AMPARs. γ-5 was previously thought not to be a TARP, and it has been widely used as a negative control. Here we find that, contrary to expectation, γ-5 acts as a TARP and serves this role in Bergmann glia. Whereas γ-5 interacts with all AMPAR subunits, and modifies their behavior to varying extents, its main effect is to regulate the function of AMPAR subunit combinations that lack short-form subunits, which constitute predominantly CP-AMPARs. Our results suggest an important role for γ-5 in regulating the functional contribution of CP-AMPARs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: γ-5 modifies GluR4 conductance and Po,peak.
Figure 2: γ-5 shows unusual TARP-like features.
Figure 3: γ-5 affects AMPAR rectification.
Figure 4: γ-5 modifies the properties of homomeric GluR1 CP-AMPARs but not those of homomeric GluR6 kainate receptors.
Figure 5: AMPAR responses from BGCs in cerebellar slices suggest a functional role for γ-5.
Figure 6: Evidence for the 'synaptic' activation of γ-5–containing AMPARs in BGCs.
Figure 7: γ-5 differentially affects 'long-form' AMPAR subunits.
Figure 8: γ-5 interacts with short- and long-form AMPAR subunits and affects surface expression.

Similar content being viewed by others

Change history

  • 16 March 2009

    In the version of this article initially published, the bar graphs in Figure 7c and 7d were misaligned. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Geiger, J.R. et al. Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995).

    Article  CAS  Google Scholar 

  2. Seeburg, P.H. & Hartner, J. Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr. Opin. Neurobiol. 13, 279–283 (2003).

    Article  CAS  Google Scholar 

  3. Swanson, G.T., Kamboj, S.K. & Cull-Candy, S.G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997).

    Article  CAS  Google Scholar 

  4. Bowie, D. & Mayer, M.L. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462 (1995).

    Article  CAS  Google Scholar 

  5. Kamboj, S.K., Swanson, G.T. & Cull-Candy, S.G. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. J. Physiol. (Lond.) 486, 297–303 (1995).

    Article  CAS  Google Scholar 

  6. Koh, D.S., Burnashev, N. & Jonas, P. Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J. Physiol. (Lond.) 486, 305–312 (1995).

    Article  CAS  Google Scholar 

  7. Bowie, D., Lange, G.D. & Mayer, M.L. Activity-dependent modulation of glutamate receptors by polyamines. J. Neurosci. 18, 8175–8185 (1998).

    Article  CAS  Google Scholar 

  8. Rozov, A. & Burnashev, N. Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature 401, 594–598 (1999).

    Article  CAS  Google Scholar 

  9. Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297 (2006).

    Article  CAS  Google Scholar 

  10. Iino, M. et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292, 926–929 (2001).

    Article  CAS  Google Scholar 

  11. Ge, W.P. et al. Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors. Science 312, 1533–1537 (2006).

    Article  CAS  Google Scholar 

  12. Matsui, K. & Jahr, C.E. Exocytosis unbound. Curr. Opin. Neurobiol. 16, 305–311 (2006).

    Article  CAS  Google Scholar 

  13. Gallo, V. Surprising synapses deep in the brain. Nat. Neurosci. 10, 267–269 (2007).

    Article  CAS  Google Scholar 

  14. Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat. Neurosci. 9, 636–641 (2006).

    Article  CAS  Google Scholar 

  15. Kwak, S. & Weiss, J.H. Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr. Opin. Neurobiol. 16, 281–287 (2006).

    Article  CAS  Google Scholar 

  16. Kristensen, A.S. & Traynelis, S.F. Neuroscience: an intrusive chaperone. Nature 435, 1042–1043 (2005).

    Article  CAS  Google Scholar 

  17. Nicoll, R.A., Tomita, S. & Bredt, D.S. Auxiliary subunits assist AMPA-type glutamate receptors. Science 311, 1253–1256 (2006).

    Article  CAS  Google Scholar 

  18. Osten, P. & Stern-Bach, Y. Learning from stargazin: the mouse, the phenotype and the unexpected. Curr. Opin. Neurobiol. 16, 275–280 (2006).

    Article  CAS  Google Scholar 

  19. Priel, A. et al. Stargazin reduces desensitization and slows deactivation of the AMPA-type glutamate receptors. J. Neurosci. 25, 2682–2686 (2005).

    Article  CAS  Google Scholar 

  20. Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    Article  CAS  Google Scholar 

  21. Turetsky, D., Garringer, E. & Patneau, D.K. Stargazin modulates native AMPA receptor functional properties by two distinct mechanisms. J. Neurosci. 25, 7438–7448 (2005).

    Article  CAS  Google Scholar 

  22. Kato, A.S. et al. New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors. J. Neurosci. 27, 4969–4977 (2007).

    Article  CAS  Google Scholar 

  23. Ziff, E.B. TARPs and the AMPA receptor trafficking paradox. Neuron 53, 627–633 (2007).

    Article  CAS  Google Scholar 

  24. Soto, D., Coombs, I.D., Kelly, L., Farrant, M. & Cull-Candy, S.G. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat. Neurosci. 10, 1260–1267 (2007).

    Article  CAS  Google Scholar 

  25. Tomita, S., Fukata, M., Nicoll, R.A. & Bredt, D.S. Dynamic interaction of stargazin-like TARPs with cycling AMPA receptors at synapses. Science 303, 1508–1511 (2004).

    Article  CAS  Google Scholar 

  26. Bats, C., Groc, L. & Choquet, D. The interaction between stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    Article  CAS  Google Scholar 

  27. Matsuda, S. et al. Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron 57, 730–745 (2008).

    Article  CAS  Google Scholar 

  28. Fukaya, M., Yamazaki, M., Sakimura, K. & Watanabe, M. Spatial diversity in gene expression for VDCCγ subunit family in developing and adult mouse brains. Neurosci. Res. 53, 376–383 (2005).

    Article  CAS  Google Scholar 

  29. Burnashev, N. et al. Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256, 1566–1570 (1992).

    Article  CAS  Google Scholar 

  30. Matsui, K., Jahr, C.E. & Rubio, M.E. High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J. Neurosci. 25, 7538–7547 (2005).

    Article  CAS  Google Scholar 

  31. Cho, C.-H., St-Gelais, F., Zhang, W., Tomita, S. & Howe, J.R. Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron 55, 890–904 (2007).

    Article  CAS  Google Scholar 

  32. Korber, C., Werner, M., Kott, S., Ma, Z.L. & Hollmann, M. The transmembrane AMPA receptor regulatory protein gamma 4 is a more effective modulator of AMPA receptor function than stargazin (gamma 2). J. Neurosci. 27, 8442–8447 (2007).

    Article  Google Scholar 

  33. Milstein, A.D., Zhou, W., Karimzadegan, S., Bredt, D.S. & Nicoll, R.A. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating. Neuron 55, 905–918 (2007).

    Article  CAS  Google Scholar 

  34. Derkach, V., Barria, A. & Soderling, T.R. Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 3269–3274 (1999).

    Article  CAS  Google Scholar 

  35. Wisden, W. & Seeburg, P.H. Mammalian ionotropic glutamate receptors. Curr. Opin. Neurobiol. 3, 291–298 (1993).

    Article  CAS  Google Scholar 

  36. Bergles, D.E., Dzubay, J.A. & Jahr, C.E. Glutamate transporter currents in Bergmann glial cells follow the time course of extrasynaptic glutamate. Proc. Natl. Acad. Sci. USA 94, 14821–14825 (1997).

    Article  CAS  Google Scholar 

  37. Clark, B.A. & Barbour, B. Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices. J. Physiol. (Lond.) 502, 335–350 (1997).

    Article  CAS  Google Scholar 

  38. Matsui, K. & Jahr, C.E. Ectopic release of synaptic vesicles. Neuron 40, 1173–1183 (2003).

    Article  CAS  Google Scholar 

  39. Douyard, J., Shen, L., Huganir, R.L. & Rubio, M.E. Differential neuronal and glial expression of GluR1 AMPA receptor subunit and the scaffolding proteins SAP97 and 4.1N during rat cerebellar development. J. Comp. Neurol. 502, 141–156 (2007).

    Article  CAS  Google Scholar 

  40. Kolleker, A. et al. Glutamatergic plasticity by synaptic delivery of GluR-B(long)-containing AMPA receptors. Neuron 40, 1199–1212 (2003).

    Article  CAS  Google Scholar 

  41. Kohler, M., Kornau, H.C. & Seeburg, P.H. The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. J. Biol. Chem. 269, 17367–17370 (1994).

    CAS  PubMed  Google Scholar 

  42. Swanson, G.T., Feldmeyer, D., Kaneda, M. & Cull-Candy, S.G. Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J. Physiol. (Lond.) 492, 129–142 (1996).

    Article  CAS  Google Scholar 

  43. Yamazaki, M. et al. A novel action of stargazin as an enhancer of AMPA receptor activity. Neurosci. Res. 50, 369–374 (2004).

    Article  CAS  Google Scholar 

  44. Choi, J. et al. Phosphorylation of stargazin by protein kinase A regulates its interaction with PSD-95. J. Biol. Chem. 277, 12359–12363 (2002).

    Article  CAS  Google Scholar 

  45. Tomita, S., Stein, V., Stocker, T.J., Nicoll, R.A. & Bredt, D.S. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45, 269–277 (2005).

    Article  CAS  Google Scholar 

  46. Lee, S.H., Simonetta, A. & Sheng, M. Subunit rules governing the sorting of internalized AMPA receptors in hippocampal neurons. Neuron 43, 221–236 (2004).

    Article  CAS  Google Scholar 

  47. Piet, R. & Jahr, C.E. Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells. J. Neurosci. 27, 4027–4035 (2007).

    Article  CAS  Google Scholar 

  48. Ziskin, J.L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D.E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10, 321–330 (2007).

    Article  CAS  Google Scholar 

  49. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000).

    Article  CAS  Google Scholar 

  50. Kato, A.S., Siuda, E.R., Nisenbaum, E.S. & Bredt, D.S. AMPA receptor subunit-specific regulation by a distinct family of type II TARPs. Neuron 59, 986–996 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Bats and D. Studniarczyk for discussion. AMPAR subunit cDNAs were gifts from S. Heinemann (Salk) and P. Seeburg (Heidelberg). TARP cDNAs (rat; γ-2, γ-3, γ-4, γ-5 and γ-8) were gifts from R. Nicoll (University of California San Francisco). This work was supported by a Wellcome Trust Programme Grant (S.G.C.-C. and M.F.), an MRC Molecular Biology Programme studentship (M.Z.) and a Royal Society-Wolfson Research Award (S.G.C.-C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Farrant or Stuart G Cull-Candy.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3 and Supplementary Methods (PDF 3599 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soto, D., Coombs, I., Renzi, M. et al. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, γ-5. Nat Neurosci 12, 277–285 (2009). https://doi.org/10.1038/nn.2266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing