Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ephrin-B3 reverse signaling through Grb4 and cytoskeletal regulators mediates axon pruning

Abstract

It has been suggested that ephrin-B proteins have receptor-like roles in the control of axon pathfinding by repulsion, although it is largely unknown how the reverse signals are coupled to downstream intracellular molecules and how they induce cytoskeletal reorganization at the axon terminal. We found that ephrin-B3 (EB3) was able to function as a repulsive guidance receptor and mediate stereotyped pruning of murine hippocampal mossy fiber axons during postnatal development. Targeted intracellular point mutants showed that axon pruning requires tyrosine phosphorylation–dependent reverse signaling and coupling to the SH2/SH3 adaptor protein Grb4 (also known as Nckβ/Nck2). Furthermore, we found that the second SH3 domain of Grb4 is required and sufficient for axon pruning/retraction by mediating interactions with Dock180 and PAK to bring about guanine nucleotide exchange and signaling downstream of Rac, respectively. Our results reveal a previously unknown pathway that controls axon pruning and elucidate the biochemical mechanism by which ephrin-B reverse signals regulate actin dynamics to bring about the retraction of growth cones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective hippocampal mossy fiber pruning in Efnb3 mutants.
Figure 2: Defective hippocampal mossy fiber pruning in Ephb mutants.
Figure 3: Mossy fiber pruning requires tyrosine phosphorylation of the EB3 cytoplasmic tail.
Figure 4: Axon pruning of hippocampal granule cell neurons induced by Cos-1 coculture in vitro requires EB3 tyrosine phosphorylation.
Figure 5: Grb4 is a key mediator for transducing EB3 reverse signals involved in axon pruning.
Figure 6: EB3 reverse signaling requires PAK and Dock180.
Figure 7: Activation of EB3 reverse signaling leads to increased Rac and Cdc42 GTP levels.

Similar content being viewed by others

References

  1. Patel, B.N. & Van Vactor, D.L. Axon guidance: the cytoplasmic tail. Curr. Opin. Cell Biol. 14, 221–229 (2002).

    Article  CAS  Google Scholar 

  2. Guan, K.L. & Rao, Y. Signaling mechanisms mediating neuronal responses to guidance cues. Nat. Rev. Neurosci. 4, 941–956 (2003).

    Article  CAS  Google Scholar 

  3. Huber, A.B., Kolodkin, A.L., Ginty, D.D. & Cloutier, J.F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003).

    Article  CAS  Google Scholar 

  4. Luo, L. & O'Leary, D.D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

    Article  CAS  Google Scholar 

  5. Low, L.K. & Cheng, H.J. Axon pruning: an essential step underlying the developmental plasticity of neuronal connections. Phil. Trans. R. Soc. Lond. B 361, 1531–1544 (2006).

    Article  CAS  Google Scholar 

  6. Raff, M.C., Whitmore, A.V. & Finn, J.T. Axonal self-destruction and neurodegeneration. Science 296, 868–871 (2002).

    Article  CAS  Google Scholar 

  7. Faulkner, R.L., Low, L.K. & Cheng, H.J. Axon pruning in the developing vertebrate hippocampus. Dev. Neurosci. 29, 6–13 (2007).

    Article  CAS  Google Scholar 

  8. Bagri, A., Cheng, H.J., Yaron, A., Pleasure, S.J. & Tessier-Lavigne, M. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113, 285–299 (2003).

    Article  CAS  Google Scholar 

  9. Liu, X.B., Low, L.K., Jones, E.G. & Cheng, H.J. Stereotyped axon pruning via plexin signaling is associated with synaptic complex elimination in the hippocampus. J. Neurosci. 25, 9124–9134 (2005).

    Article  CAS  Google Scholar 

  10. Scharfman, H.E. The Dentate Gyrus: A Comprehensive Guide to Structure, Function and Clinical Implications (Elsevier, Amsterdam, 2007).

    Google Scholar 

  11. Flanagan, J.G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  Google Scholar 

  12. Cowan, C.A. & Henkemeyer, M. Ephrins in reverse, park and drive. Trends Cell Biol. 12, 339–346 (2002).

    Article  CAS  Google Scholar 

  13. Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signaling. Nat. Rev. Mol. Cell Biol. 3, 475–486 (2002).

    Article  CAS  Google Scholar 

  14. Pasquale, E.B. Eph-ephrin bidirectional signaling in physiology and disease. Cell 133, 38–52 (2008).

    Article  CAS  Google Scholar 

  15. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).

    Article  CAS  Google Scholar 

  16. Holland, S.J. et al. Bidirectional signaling through the EPH–family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996).

    Article  CAS  Google Scholar 

  17. Bruckner, K., Pasquale, E.B. & Klein, R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643 (1997).

    Article  CAS  Google Scholar 

  18. Yokoyama, N. et al. Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29, 85–97 (2001).

    Article  CAS  Google Scholar 

  19. Williams, S.E. et al. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39, 919–935 (2003).

    Article  CAS  Google Scholar 

  20. Helmbacher, F., Schneider-Maunoury, S., Topilko, P., Tiret, L. & Charnay, P. Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development 127, 3313–3324 (2000).

    CAS  PubMed  Google Scholar 

  21. Grunwald, I.C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

    Article  CAS  Google Scholar 

  22. Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y. & Pasquale, E.B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6, 153–160 (2003).

    Article  CAS  Google Scholar 

  23. Cowan, C.A. & Henkemeyer, M. The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174–179 (2001).

    Article  CAS  Google Scholar 

  24. Himanen, J.P. et al. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat. Neurosci. 7, 501–509 (2004).

    Article  CAS  Google Scholar 

  25. Zenke, F.T., King, C.C., Bohl, B.P. & Bokoch, G.M. Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J. Biol. Chem. 274, 32565–32573 (1999).

    Article  CAS  Google Scholar 

  26. Brugnera, E. et al. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat. Cell Biol. 4, 574–582 (2002).

    Article  CAS  Google Scholar 

  27. Tu, Y., Kucik, D.F. & Wu, C. Identification and kinetic analysis of the interaction between Nck-2 and DOCK180. FEBS Lett. 491, 193–199 (2001).

    Article  CAS  Google Scholar 

  28. Kullander, K. et al. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev. 15, 877–888 (2001).

    Article  CAS  Google Scholar 

  29. Kullander, K. et al. Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299, 1889–1892 (2003).

    Article  CAS  Google Scholar 

  30. Birgbauer, E., Cowan, C.A., Sretavan, D.W. & Henkemeyer, M. Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development 127, 1231–1241 (2000).

    CAS  PubMed  Google Scholar 

  31. Cowan, C.A. et al. Ephrin-B2 reverse signaling is required for axon pathfinding and cardiac valve formation but not early vascular development. Dev. Biol. 271, 263–271 (2004).

    Article  CAS  Google Scholar 

  32. Rodenas-Ruano, A., Perez-Pinzon, M.A., Green, E.J., Henkemeyer, M. & Liebl, D.J. Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. Dev. Biol. 292, 34–45 (2006).

    Article  CAS  Google Scholar 

  33. Aoto, J. et al. Postsynaptic ephrinB3 promotes shaft glutamatergic synapse formation. J. Neurosci. 27, 7508–7519 (2007).

    Article  CAS  Google Scholar 

  34. Lim, B.K., Matsuda, N. & Poo, M.M. Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo. Nat. Neurosci. 11, 160–169 (2008).

    Article  CAS  Google Scholar 

  35. Contractor, A. et al. Trans-synaptic Eph receptor–ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    Article  CAS  Google Scholar 

  36. Armstrong, J.N. et al. B-ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. J. Neurosci. 26, 3474–3481 (2006).

    Article  CAS  Google Scholar 

  37. Bouzioukh, F. et al. Tyrosine phosphorylation sites in ephrinB2 are required for hippocampal long-term potentiation, but not long-term depression. J. Neurosci. 27, 11279–11288 (2007).

    Article  CAS  Google Scholar 

  38. Essmann, C.L. et al. Serine phosphorylation of ephrinB2 regulates trafficking of synaptic AMPA receptors. Nat. Neurosci. 11, 1035–1043 (2008).

    Article  CAS  Google Scholar 

  39. Palmer, A. et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol. Cell 9, 725–737 (2002).

    Article  CAS  Google Scholar 

  40. Segura, I., Essmann, C.L., Weinges, S. & Acker-Palmer, A. Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nat. Neurosci. 10, 301–310 (2007).

    Article  CAS  Google Scholar 

  41. Luo, L. Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 1, 173–180 (2000).

    Article  CAS  Google Scholar 

  42. Li, X. et al. Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling. Nat. Neurosci. 11, 28–35 (2008).

    Article  CAS  Google Scholar 

  43. Jin, Z. & Strittmatter, S.M. Rac1 mediates collapsin-1–induced growth cone collapse. J. Neurosci. 17, 6256–6263 (1997).

    Article  CAS  Google Scholar 

  44. Driessens, M.H. et al. Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Curr. Biol. 11, 339–344 (2001).

    Article  CAS  Google Scholar 

  45. Fan, X., Labrador, J.P., Hing, H. & Bashaw, G.J. Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline. Neuron 40, 113–127 (2003).

    Article  CAS  Google Scholar 

  46. Yang, L. & Bashaw, G.J. Son of sevenless directly links the Robo receptor to rac activation to control axon repulsion at the midline. Neuron 52, 595–607 (2006).

    Article  CAS  Google Scholar 

  47. Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134, 135–147 (2008).

    Article  CAS  Google Scholar 

  48. Jurney, W.M., Gallo, G., Letourneau, P.C. & McLoon, S.C. Rac1-mediated endocytosis during ephrin-A2– and semaphorin 3A–induced growth cone collapse. J. Neurosci. 22, 6019–6028 (2002).

    Article  CAS  Google Scholar 

  49. Zimmer, M., Palmer, A., Kohler, J. & Klein, R. EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat. Cell Biol. 5, 869–878 (2003).

    Article  CAS  Google Scholar 

  50. Parker, M. et al. Reverse endocytosis of transmembrane ephrin-B ligands via a clathrin-mediated pathway. Biochem. Biophys. Res. Commun. 323, 17–23 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.S. Ravichandran and Jane Wu for Dock180 constructs; Toshio Ohshima for Pak1 dominant-negative expressing vector; Wei Zhang and Luis Parada for mCherry-Rac1 constructs; Jan La and Robert Silvany for technical help; Suya Sun for genotyping, histological assistance and tissue culture; and Michael Chumley for helpful comments on the study. This research was supported by the NIH (R01 MH066332 and R01 EY017434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Henkemeyer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Methods (PDF 1171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, NJ., Henkemeyer, M. Ephrin-B3 reverse signaling through Grb4 and cytoskeletal regulators mediates axon pruning. Nat Neurosci 12, 268–276 (2009). https://doi.org/10.1038/nn.2254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing