Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate

This article has been updated

Abstract

Photoswitchable fluorescent probes are central to localization-based super-resolution microscopy. Among these probes, fluorescent proteins are appealing because they are genetically encoded. Moreover, the ability to achieve a 1:1 labeling ratio between the fluorescent protein and the protein of interest makes these probes attractive for quantitative single-molecule counting. The percentage of fluorescent protein that is photoactivated into a fluorescently detectable form (i.e., the photoactivation efficiency) plays a crucial part in properly interpreting the quantitative information. It is important to characterize the photoactivation efficiency at the single-molecule level under the conditions used in super-resolution imaging. Here, we used the human glycine receptor expressed in Xenopus oocytes and stepwise photobleaching or single-molecule counting photoactivated localization microcopy (PALM) to determine the photoactivation efficiency of fluorescent proteins mEos2, mEos3.1, mEos3.2, Dendra2, mClavGR2, mMaple, PA-GFP and PA-mCherry. This analysis provides important information that must be considered when using these fluorescent proteins in quantitative super-resolution microscopy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methodology.
Figure 2: PE of mEos2, Dendra2 and mClavGR2 determined from single-step photobleaching.
Figure 3: PE of mEos2 and Dendra2 determined from single-molecule-counting PALM.
Figure 4: PE of PA-GFP and PA-mCherry determined from single-molecule-counting PALM.

Similar content being viewed by others

Change history

  • 13 January 2014

    In the version of this article initially published online, the institution name "ICFO" was incorrectly written as "IFCO" in the author affiliations. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  2. Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  3. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  CAS  Google Scholar 

  4. Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).

    Article  CAS  Google Scholar 

  5. Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052 (2008).

    Article  CAS  Google Scholar 

  6. Lakadamyali, M., Babcock, H., Bates, M., Zhuang, X. & Lichtman, J. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS ONE 7, e30826 (2012).

    Article  CAS  Google Scholar 

  7. Balint, S., Verdeny Vilanova, I., Sandoval Alvarez, A. & Lakadamyali, M. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc. Natl. Acad. Sci. USA 110, 3375–3380 (2013).

    Article  CAS  Google Scholar 

  8. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  CAS  Google Scholar 

  9. Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl. Acad. Sci. USA 104, 20308–20313 (2007).

    Article  CAS  Google Scholar 

  10. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

    Article  CAS  Google Scholar 

  11. Gunzenhäuser, J., Olivier, N., Pengo, T. & Manley, S. Quantitative super-resolution imaging reveals protein stoichiometry and nanoscale morphology of assembling HIV-Gag virions. Nano Lett. 12, 4705–4710 (2012).

    Article  Google Scholar 

  12. Lando, D. et al. Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol. 2, 120078 (2012).

    Article  Google Scholar 

  13. Lee, S.H., Shin, J.Y., Lee, A. & Bustamante, C. Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc. Natl. Acad. Sci. USA 109, 17436–17441 (2012).

    Article  CAS  Google Scholar 

  14. Renz, M., Daniels, B.R., Vamosi, G., Arias, I.M. & Lippincott-Schwartz, J. Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging. Proc. Natl. Acad. Sci. USA 109, E2989–E2997 (2012).

    Article  CAS  Google Scholar 

  15. Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969–975 (2011).

    Article  CAS  Google Scholar 

  16. Fernández-Suárez, M. & Ting, A.Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9, 929–943 (2008).

    Article  Google Scholar 

  17. Lippincott-Schwartz, J. & Patterson, G.H. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol. 19, 555–565 (2009).

    Article  CAS  Google Scholar 

  18. Brakemann, T. et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat. Biotechnol. 29, 942–947 (2011).

    Article  CAS  Google Scholar 

  19. Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).

    Article  CAS  Google Scholar 

  20. Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 102, 9511–9516 (2005).

    Article  CAS  Google Scholar 

  21. Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    Article  CAS  Google Scholar 

  22. Subach, F.V. et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat. Methods 6, 153–159 (2009).

    Article  CAS  Google Scholar 

  23. McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W. & Looger, L.L. A bright and photostable photoconvertible fluorescent protein. Nat. Methods 6, 131–133 (2009).

    Article  CAS  Google Scholar 

  24. Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).

    Article  CAS  Google Scholar 

  25. Zhang, M. et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Methods 9, 727–729 (2012).

    Article  CAS  Google Scholar 

  26. Hoi, H. et al. A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J. Mol. Biol. 401, 776–791 (2010).

    Article  CAS  Google Scholar 

  27. McEvoy, A.L. et al. mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS ONE 7, e51314 (2012).

    Article  Google Scholar 

  28. Dempsey, G.T., Vaughan, J.C., Chen, K.H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

    Article  CAS  Google Scholar 

  29. Annibale, P., Scarselli, M., Kodiyan, A. & Radenovic, A. Photoactivatable fluorescent protein mEos2 displays repeated photoactivation after a long-lived dark state in the red photoconverted form. J. Phys. Chem. Lett. 1, 1506–1510 (2010).

    Article  CAS  Google Scholar 

  30. Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U. & Radenovic, A. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE 6, e22678 (2011).

    Article  CAS  Google Scholar 

  31. Sengupta, P., Jovanovic-Talisman, T. & Lippincott-Schwartz, J. Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat. Protoc. 8, 345–354 (2013).

    Article  CAS  Google Scholar 

  32. Adam, V., Nienhaus, K., Bourgeois, D. & Nienhaus, G.U. Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 48, 4905–4915 (2009).

    Article  CAS  Google Scholar 

  33. Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA 101, 15905–15910 (2004).

    Article  CAS  Google Scholar 

  34. Annibale, P., Scarselli, M., Greco, M. & Radenovic, A. Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy. Opt. Nanoscopy 1, 9 (2012).

    Article  Google Scholar 

  35. Habuchi, S., Tsutsui, H., Kochaniak, A.B., Miyawaki, A. & van Oijen, A.M. mKikGR, a monomeric photoswitchable fluorescent protein. PLoS ONE 3, e3944 (2008).

    Article  Google Scholar 

  36. Durisic, N. et al. Stoichiometry of the human glycine receptor revealed by direct subunit counting. J. Neurosci. 32, 12915–12920 (2012).

    Article  CAS  Google Scholar 

  37. Lynch, J.W. Native glycine receptor subtypes and their physiological roles. Neuropharmacology 56, 303–309 (2009).

    Article  CAS  Google Scholar 

  38. Simonson, P.D. et al. Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios. Biophys. J. 99, L81–L83 (2010).

    Article  CAS  Google Scholar 

  39. Ulbrich, M.H. & Isacoff, E.Y. Subunit counting in membrane-bound proteins. Nat. Methods 4, 319–321 (2007).

    Article  CAS  Google Scholar 

  40. Puchner, E.M., Walter, J.M., Kasper, R., Huang, B. & Lim, W.A. Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc. Natl. Acad. Sci. USA 110, 16015–16020 (2013).

    Article  CAS  Google Scholar 

  41. Goldin, A.L. Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol. 207, 266–279 (1992).

    Article  CAS  Google Scholar 

  42. Wang, M.H. A technical consideration concerning the removal of oocyte vitelline membranes for patch clamp recording. Biochem. Biophys. Res. Commun. 324, 971–972 (2004).

    Article  CAS  Google Scholar 

  43. Heyes, C.D., Kobitski, A.Y., Breus, V.V. & Nienhaus, G.U. Effect of the shell on the blinking statistics of core-shell quantum dots: a single-particle fluorescence study. Phys. Rev. B 75, 125431 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Dent (McGill University) for the GlyR-α–VFP and GlyR-β–VFP; X. Zhuang (Harvard University), for mEos2; T. Xu and P. Xu (Chinese Academy of Sciences) for mEos3.1 and mEos3.2; A. McEvoy (University of California, Berkeley) for Dendra2, mClavGR2, mMaple and PA-GFP; T. Misgeld (Technical University of Munich) for PAmCherry; and M. Ulbrich (University Freiburg) for pGEMHE-α1E-Ca2+-mEGFP. We thank C.D. Heyes (University of Arkansas) for critical reading of the manuscript, and I. Vernos and J. Cela-Gallego (Center for Genomic Regulation) for the oocytes. This work was supported in part by Fundació Cellex Barcelona and in part by a Marie Curie International Reintegration grant to M.L. (FP7-PEOPLE-2010-RG). N.D. is a NEST postdoctoral fellow partially supported by the Marie Curie Co-funding of Regional, National and International Programs (COFUND) action of the European Commission.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and N.D. designed the experiments. N.D. and L.L.-C. performed the experiments and the data analysis. Á.S.-Á. provided reagents and performed the cloning of the plasmids. J.S.B. carried out simulations and wrote software. M.L. and N.D. wrote the manuscript. M.L. supervised the project.

Corresponding author

Correspondence to Melike Lakadamyali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1 and 2, and Supplementary Notes 1–3 (PDF 2835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durisic, N., Laparra-Cuervo, L., Sandoval-Álvarez, Á. et al. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat Methods 11, 156–162 (2014). https://doi.org/10.1038/nmeth.2784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2784

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing