Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion

Abstract

Porous compounds are ubiquitous and indispensable in daily life as adsorbents and catalysts. The discovery of a new porous compound with unique properties based on intrinsic nanosized space and surface functionalities is scientifically and technologically important. However, the functional species used in this context are limited to those that are sufficiently inert to not spoil the porous structures. Here, we show a new strategy to achieve a crystalline porous material with the pore surface regularly decorated with highly reactive ‘bare’ nitrenes that are photonically generated from stable ‘dormant’ precursors at will. The bare triplet nitrenes were accessible to and reacted with adsorbed oxygen or carbon monoxide molecules, which showed not only activation of the pore surface, but also a high probability of chemical trapping and conversion of guest molecules by light stimulation on demand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of photoactivation of a PCP with azide functionalities.
Figure 2: X-ray crystal structural analyses.
Figure 3: Photochemical reactions of CID-N3 monitored by infrared measurements.
Figure 4: 1H-NMR study of the photochemical products from dried CID-N3.
Figure 5: In situ photoactivation of CID-N3 with adsorption of oxygen.

Similar content being viewed by others

References

  1. Schüth, F., Sing, K. S. W. & Weitkamp, J. Handbook of Porous Solids (Wiley-VCH, 2002).

    Book  Google Scholar 

  2. Rowsell, J. L. C., Spencer, E. C., Eckert, J., Howard, J. A. K. & Yaghi, O. M. Gas adsorption sites in a large-pore metal–organic framework. Science 309, 1350–1354 (2005).

    Article  CAS  Google Scholar 

  3. Serre, C. et al. Role of solvent–host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    Article  CAS  Google Scholar 

  4. Yang, Q., Kapoor, M. P. & Inagaki, S. Sulfonic acid-functionalized mesoporous benzene–silica with a molecular-scale periodicity in the walls. J. Am. Chem. Soc. 124, 9694–9695 (2002).

    Article  CAS  Google Scholar 

  5. Alauzun, J., Mehdi, A., Reyé, C. & Corriu, R. J. P. Mesoporous materials with an acidic framework and basic pores. A successful cohabitation. J. Am. Chem. Soc. 128, 8718–8719 (2006).

    Article  CAS  Google Scholar 

  6. Georgiev, P. A., Albinati, A., Mojet, B. L., Ollivier, J. & Eckert, J. Observation of exceptionally strong binding of molecular hydrogen in a porous material: Formation of an η2-H2 complex in a Cu-exchanged ZSM-5 zeolite. J. Am. Chem. Soc. 129, 8086–8087 (2007).

    Article  CAS  Google Scholar 

  7. Maji, T. K., Matsuda, R. & Kitagawa, S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nature Mater. 6, 142–148 (2007).

    Article  CAS  Google Scholar 

  8. Asefa, T., MacLachlan, M. J., Coombs, N. & Ozin, G. A. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402, 867–871 (1999).

    Article  CAS  Google Scholar 

  9. Feng, X. et al. Functionalized monolayers on ordered mesoporous supports. Science 276, 923–926 (1997).

    Article  CAS  Google Scholar 

  10. Li, Q. et al. Docking in metal–organic frameworks. Science 325, 855–859 (2009).

    Article  CAS  Google Scholar 

  11. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  12. Xiang, S., Zhang, Y., Xin, Q. & Li, C. Asymmetric epoxidation of allyl alcohol on organic–inorganic hybrid chiral catalysts grafted onto the surface of silica and in the mesopores of MCM-41. Angew. Chem. Int. Ed. 41, 821–824 (2002).

    Article  CAS  Google Scholar 

  13. Che, S. et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nature Mater. 2, 801–805 (2003).

    Article  CAS  Google Scholar 

  14. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    Article  CAS  Google Scholar 

  15. Kuschel, A., Sievers, H. & Polarz, S. Amino acid silica hybrid materials with mesoporous structure and enantiopure surfaces. Angew. Chem. Int. Ed. 47, 9513–9517 (2008).

    Article  CAS  Google Scholar 

  16. Moss, R. A., Platz, M. S. & Jones, M. Jr Reactive Intermediate Chemistry (Wiley-Interscience, 2004).

    Google Scholar 

  17. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  18. Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  19. Dalgarno, S. J., Power, N. P. & Atwood, J. L. Metallo-supramolecular capsules. Coord. Chem. Rev. 252, 825–841 (2008).

    Article  CAS  Google Scholar 

  20. Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    Article  CAS  Google Scholar 

  21. Nouar, F. et al. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal–organic frameworks. J. Am. Chem. Soc. 130, 1833–1835 (2008).

    Article  CAS  Google Scholar 

  22. Kitagawa, S., Kitaura, R. & Noro, S-i. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  23. Yang, S. et al. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal–organic framework. Nature Chem. 1, 487–493 (2009).

    Article  CAS  Google Scholar 

  24. Mulfort, K. L. & Hupp, J. T. Chemical reduction of metal–organic framework materials as a method to enhance gas uptake and binding. J. Am. Chem. Soc. 129, 9604–9605 (2007).

    Article  CAS  Google Scholar 

  25. Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    Article  CAS  Google Scholar 

  26. Dincaˇ, M. & Long, J. R. High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal–organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2 . J. Am. Chem. Soc. 129, 11172–11176 (2007).

    Article  Google Scholar 

  27. Lee, Y-G., Moon, H. R., Cheon, Y. E. & Suh, M. P. A comparison of the H2 sorption capacities of isostructural metal–organic frameworks with and without accessible metal sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. Angew. Chem. Int. Ed. 47, 7741–7745 (2008).

    Article  CAS  Google Scholar 

  28. Bradshaw, D., Warren, J. E. & Rosseinsky, M. J. Reversible concerted ligand substitution at alternating metal sites in an extended solid. Science 315, 977–980 (2007).

    Article  CAS  Google Scholar 

  29. Seo, J. S. et al. A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000).

    Article  CAS  Google Scholar 

  30. Hasegawa, S. et al. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: Selective sorption and catalysis. J. Am. Chem. Soc. 129, 2607–2614 (2007).

    Article  CAS  Google Scholar 

  31. Ingleson, M. J. et al. Generation of a solid Brønsted acid site in a chiral framework. Chem. Commun. 1287–1289 (2008).

  32. Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009).

    Article  CAS  Google Scholar 

  33. Wang, Z. & Cohen, S. M. Postsynthetic modification of metal–organic frameworks. Chem. Soc. Rev. 38, 1315–1329 (2009).

    Article  CAS  Google Scholar 

  34. Seo, J., Matsuda, R., Sakamoto, H., Bonneau, C. & Kitagawa, S. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. J. Am. Chem. Soc. 131, 12792–12800 (2009).

    Article  CAS  Google Scholar 

  35. Gritsan, N. P. & Platz, M. S. Kinetics, spectroscopy, and computational chemistry of arylnitrenes. Chem. Rev. 106, 3844–3867 (2006).

    Article  CAS  Google Scholar 

  36. Sasaki, A., Mahé, L., Izuoka, A. & Sugawara, T. Chemical consequences of arylnitrenes in the crystalline environment. Bull. Chem. Soc. Jpn 71, 1259–1275 (1998).

    Article  CAS  Google Scholar 

  37. Harder, T., Wessig, P., Bendig, J. & Stösser, R. Photochemical reactions of nitroso oxides at low temperatures: The first experimental evidence for dioxaziridines. J. Am. Chem. Soc. 121, 6580–6588 (1999).

    Article  CAS  Google Scholar 

  38. Inui, H., Irisawa, M. & Oishi, S. Reaction of (4-nitrophenyl)nitrene with molecular oxygen in low-temperature matrices: First IR detection and photochemistry of aryl nitroso oxide. Chem. Lett. 34, 478–479 (2005).

    Article  CAS  Google Scholar 

  39. Dunkin, I. R. & Thomson, P. C. P. Pentafluorophenyl nitrene: A matrix isolated aryl nitrene that does not undergo ring expansion. J. Chem. Soc. Chem. Commun. 1192–1193 (1982).

  40. Lamara, K. & Smalley, R. K. 3H-Azepines and related systems. Part 4. Preparation of 3H-azepin-2-ones and 6H-azepino[2,1-b]quinazolin-12-ones by photo-induced ring expansions of aryl azides. Tetrahedron 47, 2277–2290 (1991).

    Article  CAS  Google Scholar 

  41. Priewisch, B. & Rueck-Braun, K. Efficient preparation of nitrosoarenes for the synthesis of azobenzenes. J. Org. Chem. 70, 2350–2352 (2005).

    Article  CAS  Google Scholar 

  42. Horike, S., Tanaka, D., Nakagawa, K. & Kitagawa, S. Selective guest sorption in an interdigitated porous framework with hydrophobic pore surfaces. Chem. Commun. 3395–3397 (2007).

Download references

Acknowledgements

The synchrotron radiation experiments were carried out at BL02B1 in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal no. 2009A1569).

Author information

Authors and Affiliations

Authors

Contributions

H.S., R.M. and S.K. conceived the project. H.S. and R.M. prepared and analysed all compounds described and carried out the sorption, spectroscopic measurements and photochemical experiments. K.S. and M.T. assisted the crystallographic study using synchrotron X-rays. H.S., R.M. and S.K. designed the study, analysed the data and wrote the paper.

Corresponding authors

Correspondence to Ryotaro Matsuda or Susumu Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, H., Matsuda, R., Sugimoto, K. et al. Photoactivation of a nanoporous crystal for on-demand guest trapping and conversion. Nature Mater 9, 661–666 (2010). https://doi.org/10.1038/nmat2808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing