Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA

Abstract

Vaginal instillation of small-interfering RNA (siRNA) using liposomes has led to silencing of endogenous genes in the genital tract and protection against challenge from infectious disease. Although siRNA lipoplexes are easily formulated, several of the most effective transfection agents available commercially may be toxic to the mucosal epithelia and none are able to provide controlled or sustained release. Here, we demonstrate an alternative approach using nanoparticles composed entirely of FDA-approved materials. To render these materials effective for gene silencing, we developed novel approaches to load them with high amounts of siRNA. A single dose of siRNA-loaded nanoparticles to the mouse female reproductive tract caused efficient and sustained gene silencing. Knockdown of gene expression was observed proximal (in the vaginal lumen) and distal (in the uterine horns) to the site of topical delivery. In addition, nanoparticles penetrated deep into the epithelial tissue. This is the first report demonstrating that biodegradable polymer nanoparticles are effective delivery vehicles for siRNA to the vaginal mucosa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro cytotoxicity and bioactivity of siRNA nanoparticles.
Figure 2: Fluorescent PLGA nanoparticles appear throughout the reproductive tract and penetrate deep within the vaginal tissue after topical administration.
Figure 3: Release of PLGA nanoparticles densely loaded with siRNA is sustained for several weeks.
Figure 4: Intravaginal delivery of siRNA using biodegradable nanoparticles causes gene silencing throughout the reproductive tract of transgenic GFP mice.
Figure 5: A single topical administration of PLGA nanoparticles loaded with siRNA causes sustained gene silencing throughout the reproductive tract.
Figure 6: Lipid delivery of siRNA may be inflammatory and cause epithelial disruption in the vaginal tissue.

Similar content being viewed by others

References

  1. Grant, R. M. et al. Perspective—whither or wither microbicides? Science 321, 532–534 (2008).

    Article  CAS  Google Scholar 

  2. Wilson, D. P., Coplan, P. M., Wainberg, M. A. & Blower, S. M. The paradoxical effects of using antiretroviral-based microbicides to control HIV epidemics. Proc. Natl Acad. Sci. USA 105, 9835–9840 (2008).

    Article  CAS  Google Scholar 

  3. Veazey, R. S. et al. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature 438, 99–102 (2005).

    Article  CAS  Google Scholar 

  4. Richardson, J. L. & Illum, L. Penetration enhancement for polypeptides through epithelia. D. Routes of delivery case studies. 8. The vaginal route of peptide and protein drug delivery. Adv. Drug. Delivery Rev. 8, 341–366 (1992).

    Article  CAS  Google Scholar 

  5. Veazey, R. S. et al. Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nature Med. 9, 343–346 (2003).

    Article  CAS  Google Scholar 

  6. Sherwood, J. K., Zeitlin, L., Whaley, K. J., Cone, R. A. & Saltzman, M. Controlled release of antibodies for long-term topical passive immunoprotection of female mice against genital herpes. Nature Biotechnol. 14, 468–471 (1996).

    Article  CAS  Google Scholar 

  7. Shen, H., Goldberg, E. & Saltzman, W. M. Gene expression and mucosal immune responses after vaginal DNA immunization in mice using a controlled delivery matrix. J. Control. Release 86, 339–348 (2003).

    Article  CAS  Google Scholar 

  8. Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89–94 (2006).

    Article  CAS  Google Scholar 

  9. Gu, W. et al. Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes. Cancer Gene Ther. 13, 1023–1032 (2006).

    Article  CAS  Google Scholar 

  10. Kumar, P. et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134, 577–586 (2008).

    Article  CAS  Google Scholar 

  11. Stone, A. Microbicides: A new approach to preventing HIV and other sexually transmitted infections. Nature Rev. Drug Discov. 1, 977–985 (2002).

    Article  CAS  Google Scholar 

  12. Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  Google Scholar 

  13. Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  Google Scholar 

  14. Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nature Biotechnol. 26, 431–442 (2008).

    Article  CAS  Google Scholar 

  15. Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  Google Scholar 

  16. Breunig, M., Lungwitz, U., Liebl, R. & Goepferich, A. Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl Acad. Sci. USA 104, 14454–14459 (2007).

    Article  CAS  Google Scholar 

  17. Lv, H. T., Zhang, S. B., Wang, B., Cui, S. H. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109 (2006).

    Article  CAS  Google Scholar 

  18. Li, S., Rizzo, M. A., Bhattacharya, S. & Huang, L. Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 5, 930–937 (1998).

    Article  CAS  Google Scholar 

  19. Zhang, J. S., Liu, F. & Huang, L. Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. Adv. Drug Delivery Rev. 57, 689–698 (2005).

    Article  CAS  Google Scholar 

  20. Conwell, C. C., Liu, F. & Huang, L. Several serum proteins significantly decrease inflammatory response to lipid-based non-viral vectors. Mol. Ther. 16, 370–377 (2008).

    Article  CAS  Google Scholar 

  21. Khazanov, E., Simberg, D. & Barenholz, Y. Lipoplexes prepared from cationic liposomes and mammalian DNA induce CpG-independent, direct cytotoxic effects in cell cultures and in mice. J. Gene Med. 8, 998–1007 (2006).

    Article  CAS  Google Scholar 

  22. Peer, D., Park, E. J., Morishita, Y., Carman, C. V. & Shimaoka, M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319, 627–630 (2008).

    Article  CAS  Google Scholar 

  23. Panyam, J. & Labhasetwar, V. Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20, 212–220 (2003).

    Article  CAS  Google Scholar 

  24. Panyam, J., Zhou, W. Z., Prabha, S., Sahoo, S. K. & Labhasetwar, V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: Implications for drug and gene delivery. FASEB J. 16, 1217–1226 (2002).

    Article  CAS  Google Scholar 

  25. Farokhzad, O. C. et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA 103, 6315–6320 (2006).

    Article  CAS  Google Scholar 

  26. Murata, N., Takashima, Y., Toyoshima, K., Yamamoto, M. & Okada, H. Anti-tumor effects of anti-VEGF siRNA encapsulated with PLGA microspheres in mice. J. Control. Release 126, 246–254 (2008).

    Article  CAS  Google Scholar 

  27. Khan, A. et al. Sustained polymeric delivery of gene silencing antisense ODNs, siRNA, DNAzymes and ribozymes: In vitro and in vivo studies. J. Drug Target 12, 393–404 (2004).

    Article  CAS  Google Scholar 

  28. Bachrach, U. Naturally occurring polyamines: Interaction with macromolecules. Curr. Protein Pept. Sci. 6, 559–566 (2005).

    Article  CAS  Google Scholar 

  29. Childs, A. C., Mehta, D. J. & Gerner, E. W. Polyamine-dependent gene expression. Cell. Mol. Life Sci. 60, 1394–1406 (2003).

    Article  CAS  Google Scholar 

  30. Freiberg, S. & Zhu, X. Polymer microspheres for controlled drug release. Int. J. Pharm. 282, 1–18 (2004).

    Article  CAS  Google Scholar 

  31. Grayson, A. C. R., Doody, A. M. & Putnam, D. Biophysical and structural characterization of polyethylenimine-mediated siRNA delivery in vitro. Pharm. Res. 23, 1868–1876 (2006).

    Article  Google Scholar 

  32. Robbins, M. et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum. Gene Ther. 19, 991–999 (2008).

    Article  CAS  Google Scholar 

  33. Flynn, M., Casey, D., Todryk, S. & Mahon, B. Efficient delivery of small interfering RNA for inhibition of IL-12p40 expression in vivo. J. Inflamm. 1, 1–12 (2004).

    Article  Google Scholar 

  34. Song, E. W. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol. 23, 709–717 (2005).

    Article  CAS  Google Scholar 

  35. Zender, L. et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc. Natl Acad. Sci. USA 100, 7797–7802 (2003).

    Article  CAS  Google Scholar 

  36. Robbins, M. et al. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum. Gene Ther. 19, 991–999 (2008).

    Article  CAS  Google Scholar 

  37. Zhang, S. B., Zhao, B., Jiang, H. M., Wang, B. & Ma, B. C. Cationic lipids and polymers mediated vectors for delivery of siRNA. J. Control. Release 123, 1–10 (2007).

    Article  CAS  Google Scholar 

  38. Castanotto, D. & Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457, 426–433 (2009).

    Article  CAS  Google Scholar 

  39. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nature Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  Google Scholar 

  40. Park, T. G., Jeong, J. H. & Kim, S. W. Current status of polymeric gene delivery systems. Adv. Drug Delivery Rev. 58, 467–486 (2006).

    Article  CAS  Google Scholar 

  41. Jiang, W. L., Gupta, R. K., Deshpande, M. C. & Schwendeman, S. P. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv. Drug Delivery Rev. 57, 391–410 (2005).

    Article  CAS  Google Scholar 

  42. Putney, S. D. & Burke, P. A. Improving protein therapeutics with sustained-release formulations. Nature Biotechnol. 16, 153–157 (1998).

    Article  CAS  Google Scholar 

  43. Yuan, X. D. et al. siRNA drug delivery by biodegradable polymeric nanoparticles. J. Nanosci. Nanotechnol. 6, 2821–2828 (2006).

    Article  CAS  Google Scholar 

  44. Braden, A., Kashyap, A., Vasir, J., Labhasetwar, V. & Vishwanatha, J. K. Polymeric nanoparticles for sustained down-regulation of annexin A2 lead to reduction in proliferation and migration of prostate cancer cells. J. Biomed. Nanotechnol. 3, 148–159 (2007).

    Article  CAS  Google Scholar 

  45. Conner, S. D. & Schmid, S. L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  Google Scholar 

  46. Thomas, T. & Thomas, T. J. Polyamines in cell growth and cell death: Molecular mechanisms and therapeutic applications. Cell. Mol. Life Sci. 58, 244–258 (2001).

    Article  CAS  Google Scholar 

  47. Olmsted, S. S. et al. Diffusion of macromolecules and virus-like particles in human cervical mucus. Biophys. J. 81, 1930–1937 (2001).

    Article  CAS  Google Scholar 

  48. Lai, S. K. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl Acad. Sci. USA 104, 1482–1487 (2007).

    Article  CAS  Google Scholar 

  49. Novina, C. D. et al. siRNA-directed inhibition of HIV-1 infection. Nature Med. 8, 681–686 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Flavell for use of the IVIS 200 imaging system. We are also grateful to A. Haberman and D. Gonzalez for assistance with the two-photon microscopy imaging. We thank T. Kyriakides, A. Iwasaki and S. Jay for helpful analysis and discussion of tissue sections used for immunohistochemistry. We also thank A. Sin for assistance with nanoparticle characterization and J. Blum for technical assistance with the animal experiments. Y. Cu, J. Saucier-Sawyer, A. Lin and J. Blum carried out blind scoring of the microscopy images for fluorescence. This work was supported by grants from the NIH to W.M.S. (RO1-EB0000487-18). K.A.W. acknowledges the fellowship support from the L’Oreal FWIS and a postdoctoral training fellowship (T32-HL007950-08).

Author information

Authors and Affiliations

Authors

Contributions

K.A.W. and W.M.S. designed the experiments. K.A.W. prepared and characterized the siRNA polymer nanoparticles. K.A.W., J.K.S.S. and M.J.W. carried out the in vitro cell culture experiments, and also collected and analysed the data. K.A.W. and J.K.S.S. carried out the in vivo animal experiments and collected the reproductive tissue, and K.A.W carried out the tissue sectioning, and the collection and analysis of microscopy images. K.A.W. and Y.C. prepared fluorescent nanoparticles and carried out biodistribution studies, and Y.C. collected and analysed data from these studies. K.A.W. carried out the immunohistochemical staining and C.J.B. carried out the histological examination of sectioned tissues.

Corresponding author

Correspondence to W. Mark Saltzman.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1569 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodrow, K., Cu, Y., Booth, C. et al. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nature Mater 8, 526–533 (2009). https://doi.org/10.1038/nmat2444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2444

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing