Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced spin accumulation and novel magnetotransport in nanoparticles

Abstract

Spin injection and accumulation are key phenomena supporting a variety of concepts for spin-electronic devices. These phenomena are expected to be enhanced in nanoparticles over bulk structures due to their discrete energy levels and large charging energies. In this article, precise magnetotransport measurements in the single-electron tunnelling regime are performed by preparing appropriate microfabricated devices containing cobalt nanoparticles. Here we provide experimental evidence for characteristic features of spin accumulation in magnetic nanoparticles, such as oscillations of the magnetoresistance with a periodical sign change as a function of bias voltage. Theoretical analysis of the magnetoresistance behaviour clearly shows that the spin-relaxation time in nanoparticles is highly enhanced in comparison with that in the bulk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of a sample with pillared structure, which was prepared for the current-perpendicular-to-plane measurement.
Figure 2: Magnetotransport properties measured at 4.2 K in a Al/Al-O/Co-Al-O/Co sample with sub-micrometre-sized area.
Figure 3: Theoretical model to study the spin-accumulation effect on TMR, and the results assuming an infinite spin-relaxation time in a ferromagnetic island.
Figure 4: Bias voltage (V) dependence of the tunnel magnetoresistance (TMR) behaviour for various values of the spin-relaxation time τSF.

Similar content being viewed by others

References

  1. Prinz, G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  2. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  3. Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    Article  CAS  Google Scholar 

  4. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation. Nature 410, 345–348 (2001).

    Article  CAS  Google Scholar 

  5. Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & vanWees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    Article  CAS  Google Scholar 

  6. Grabert, H. & Devoret, M. H. (eds) Single Charge Tunneling vol. 294 of NATO ASI Series (Plenum, New York, 1992).

    Google Scholar 

  7. Ono, K., Shimada, H., Kobayashi, S. & Ootuka, Y. Magnetoresistance of Ni/NiO/Co small tunnel junctions in Coulomb blockade regime. J. Phys. Soc. Jpn 65, 3449–3451 (1996).

    Article  CAS  Google Scholar 

  8. Mitani, S. et al. Enhanced magnetoresistance in insulating granular systems: Evidence for higher-order tunneling. Phys. Rev. Lett. 81, 2799–2802 (1998).

    Article  CAS  Google Scholar 

  9. Yakushiji, K. et al. Enhanced tunnel magnetoresistance in granular nanobridges. Appl. Phys. Lett. 78, 515–517 (2001).

    Article  CAS  Google Scholar 

  10. Yakushiji, K., Mitani, S., Takanashi, K. & Fujimori, H. Tunnel magnetoresistance oscillations in current perpendicular to plane geometry of CoAlO granular thin films. J. Appl. Phys 91, 7038–7040 (2002).

    Article  CAS  Google Scholar 

  11. Barnas̀, J. & Fert, A. Magnetoresistance oscillations due to charging effects in double ferromagnetic tunnel junctions. Phys. Rev. Lett. 80, 1058–1061 (1998).

    Article  Google Scholar 

  12. Barnas̀, J. & Fert, A. Effect of spin accumulation on single-electron tunneling in a double ferromagnetic microjunction. Europhys. Lett. 44, 85–90 (1998).

    Article  Google Scholar 

  13. Brataas, A., Nazarov, Y. V., Inoue, J. & Bauer, G. E. W. Spin accumulation in small ferromagnetic double-barrier junctions. Phys. Rev. B 59, 93–96 (1999).

    Article  CAS  Google Scholar 

  14. Barthélémy, A., Fert, A. & Petroff, F. in Handbook of Magnetic Materials vol. 12 (ed. Buschow, K. H. J.) (Elsevier, Amsterdam, 1999).

    Google Scholar 

  15. Bass, J. & Pratt Jr, W. Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers. J. Magn. Magn. Mater. 200, 274–289 (1999).

    Article  CAS  Google Scholar 

  16. Maekawa, S. & Shinjo, T. (eds) Spin Dependent Transport in Magnetic Nanostructures (Advances in Condensed Matter Science series, Taylor & Francis, London and New York, 2002).

    Google Scholar 

  17. Mitani, S., Fujimori, H. & Ohnuma, S. Spin-dependent tunneling phenomena in insulating granular systems. J. Magn. Magn. Mater. 165, 141–148 (1997).

    Article  CAS  Google Scholar 

  18. Yakushiji, K., Mitani, S., Takanashi, K., Ha, J.-G. & Fujimori, H. Composition dependence of particle size distribution and giant magnetoresistance in Co-Al-O granular films. J. Magn. Magn. Mater. 212, 75–81 (2000).

    Article  CAS  Google Scholar 

  19. Weymann I. & Barnas̀, J. Transport characteristics of ferromagnetic single-electron transistors. Phys. Status Solidi B 236, 651–660 (2003).

    Article  CAS  Google Scholar 

  20. Slonczewski, J. C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 39, 6995–7002 (1989).

    Article  CAS  Google Scholar 

  21. Inoue, J. & Maekawa, S. Theory of tunneling magnetoresistance in granular magnetic films. Phys. Rev. B 53, R11927–R11929 (1996).

    Article  CAS  Google Scholar 

  22. Brataas, A., Nazarov, Y. V. & Bauer, G. E. W. Finite-element theory of transport in ferromagnetic-normal metal systems. Phys. Rev. Lett. 84, 2481–2484 (2000).

    Article  CAS  Google Scholar 

  23. Hernando, D. H., Nazarov, Y. V., Brataas, A. & Bauer, G. E. W. Conductance modulation by spin precession in noncollinear ferromagnet normal-metal ferromagnet systems. Phys. Rev. B 62, 5700–5712 (2000).

    Article  Google Scholar 

  24. Kübler, J. Theory of Itinerant Electron Magnetism (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  25. Stearns, M. B. Simple explanation of tunneling spin-polarization of Fe, Co, Ni and its alloys. J. Magn. Magn. Mater. 5, 167–171 (1977).

    Article  CAS  Google Scholar 

  26. Meservey, R. & Tedrow, P. Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994).

    Article  Google Scholar 

  27. Guéron, S., Deshmukh, M. M., Myers, E. B. & Ralph, D. C. Tunneling via individual electronic states in ferromagnetic nanoparticles. Phys. Rev. Lett. 83, 4148–4151 (1999).

    Article  Google Scholar 

  28. Dechmukh, M. M. et al. Magnetic anisotropy variations and nonequilibrium tunneling in a cobalt nanoparticle. Phys. Rev. Lett. 87, 226801 (2001).

    Article  Google Scholar 

  29. Kleff, S., von Delft, J., Deshmukh, M. M. & Ralph, D. C. Model for ferromagnetic nanograins with discrete electronic states. Phys. Rev. B 64, 220401R (1999).

    Article  Google Scholar 

  30. Kawabata, A. Electronic properties of fine metallic particles. III. E. S. R. absorption line shape. J. Phys. Soc. Jpn 29, 902–911 (1970).

    Article  CAS  Google Scholar 

  31. Khalliulin, G. G. & Khusainov, M. G. Theory of spin-lattice relaxation of conduction electrons in small metallic particles. Sov. Phys. JETP 67, 524–529 (1988).

    Google Scholar 

  32. Mitrikas, G., Trapalis, C. C. & Kordas, G. Electron spin-lattice relaxation of silver nanoparticles embedded in SiO2 and TiO2 matrices. J. Chem. Phys. 111, 8098–8104 (1999).

    Article  CAS  Google Scholar 

  33. Yakushiji, K., Mitani, S., Takanashi, K. & Fujimori, H. Bias voltage dependence of GMR in insulating granular thin films. J. Magn. Soc. Jpn 22, 577–580 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. G. Khalliulin and J. Martinek for useful discussions. Some of the experiments were performed at LAM, IMR, Tohoku University. K. T. and S. Mitani were supported by the Asahi glass foundation. S. Mitani was supported by the Sumitomo Foundation. F.E. was supported by the 21st century COE program for young researchers. F.E. is grateful to the Post-doctoral fellowship program of JSPS. H.I. is supported by MEXT. Kakenhi (No. 14076204 and 16710061). H.I., S.T. and S.Maekawa were supported by the NAREGI Nanoscience Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Yakushiji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakushiji, K., Ernult, F., Imamura, H. et al. Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nature Mater 4, 57–61 (2005). https://doi.org/10.1038/nmat1278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing