Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic dynamics and Marangoni films during liquid-metal spreading

Abstract

Despite its apparent simplicity, spreading of liquid metals at high temperatures has defied description and generalization. Wetting at high temperature is usually accompanied by interdiffusion and chemical reaction, but the forces that drive reactive spreading and the mechanisms that control its kinetics have been very poorly understood. The unsolved challenge has been to link macroscopic measurements such as the dynamic contact angle or the speed of a moving liquid front to phenomena occurring at the microscopic and even atomic level in the vicinity of the triple solid–liquid–vapour junction. We have taken a big step towards meeting this challenge. Our systematic analysis of the spreading of metal–metal systems with varying degrees of mutual solubility allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids and liquid metals and on formation of Marangoni films driven by surface-tension gradients in high-temperature systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous spreading of small metal drops.
Figure 2: Schematic depicting the fast spreading of a liquid on a substrate with mutual solubility.
Figure 3: Comparison of the spreading kinetics of liquid metals to different models.
Figure 4: Images and chemical analysis of the Marangoni film in the Au-Ni system.
Figure 5: Images and chemical analysis of the Marangoni film Ge–Si system.
Figure 6: Schematic showing the formation of a Marangoni film in systems with large mutual solubility.

Similar content being viewed by others

References

  1. Ambrose, J. C., Nicholas, M. G. & Stoneham, A. M. Dynamics of braze spreading. Acta Metall. Mater. 40, 2483–2488 (1992).

    Article  CAS  Google Scholar 

  2. Ambrose, J. C., Nicholas, M. G. & Stoneham, A. M. Dynamics of liquid drop spreading in metal-metal systems. Acta Metall. Mater. 41, 2395–2401 (1993).

    Article  CAS  Google Scholar 

  3. Eustathopoulos, N. Dynamics of wetting in reactive metal/ceramic systems. Acta Mater. 46, 2319–2327 (1998).

    CAS  Google Scholar 

  4. Loehman, R. E. & Tomsia, A. P. Wetting and joining of mullite ceramics by active-metal braze alloys. J. Am. Ceram. Soc. 77, 271–4 (1994).

    Article  CAS  Google Scholar 

  5. Saiz, E., Tomsia, A. P. & Cannon, R. M. Ridging effects on wetting and spreading of liquids on solids. Acta Mater. 46, 2349–2361 (1998).

    Article  CAS  Google Scholar 

  6. Saiz, E., Hwang, C. W., Suganuma, K. & Tomsia, A. P. Spreading of Sn-Ag solders on FeNi alloys. Acta Mater. 51, 3185–3197 (2003).

    Article  CAS  Google Scholar 

  7. Grigorenko, N., Poluyanskaya, V., Eustathopoulos, N. & Naidich, Y. (eds) Kinetics of Spreading of Some Metal Melts Over Covalent Ceramic Surfaces (Kluwer Academic, Boston, 1998).

    Book  Google Scholar 

  8. Levich, V. G. Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

    Google Scholar 

  9. Cazabat, A. M., Heslot, F., Troian, S. M. & Carles, P. Fingering instability of thin spreading films driven by temperature gradients. Nature 346, 824–826 (1990).

    Article  CAS  Google Scholar 

  10. Carles, P., Cazabat, A. M. & Kolb, E. The Spreading of films by surface tension gradients. Colloids Surfaces A 79, 65–70 (1993).

    Article  CAS  Google Scholar 

  11. Ludviksson, V. & Lightfoot, E. N. The dynamics of thin liquid films in the presence of surface-tension gradients. AIChE J. 17, 1166–1173 (1971).

    Article  CAS  Google Scholar 

  12. Saiz, E., Cannon, R. M. & Tomsia, A. P. Reactive spreading: Adsorption, ridging and compound formation. Acta Mater. 48, 4449–4462 (2000).

    Article  CAS  Google Scholar 

  13. Brochard-Wyart, F. & de Gennes, P. G. Dynamics of partial wetting. Adv. Colloid and Interface Sci. 39, 1–11 (1992).

    Article  CAS  Google Scholar 

  14. Saiz, E., Tomsia, A. P. & Cannon, R. M. Triple line ridging and attachment in high-temperature wetting. Scripta Mater. 44, 159–164 (2001).

    Article  CAS  Google Scholar 

  15. Cazabat, A. M., Gerdes, M. S., Valignat, M. P. & Villette, S. Dynamics of wetting: From theory to experiment. Interface Sci. 5, 129–139 (1997).

    Article  CAS  Google Scholar 

  16. Kistler, S. F. (ed.) Hydrodynamics of Wetting (Marcel Dekker, New York, 1993).

    Google Scholar 

  17. Blake, T. D. (ed.) Dynamic Contact Angles and Wetting Kinetics (Marcel Dekker, New York, 1993).

    Google Scholar 

  18. De Coninck, J., de Ruijter, M. J. & Voue, M. Dynamics of wetting. Current Opin. Colloid Interface Sci. 6, 49–53 (2001).

    Article  CAS  Google Scholar 

  19. de Gennes, P. G. Wetting: Static and dynamics. Rev. Mod. Phys. 53, 827–863 (1985).

    Article  Google Scholar 

  20. Cox, R. G. The dynamics of the spreading of liquids on a solid surface. I. Viscous flow. J. Fluid Mech. 168, 169–94 (1986).

    Article  CAS  Google Scholar 

  21. Voinov, O. V. Hydrodynamics at contact angles. Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza 76–84 (1976).

  22. Schneemilch, M., Hayes, R. A., Petrov, J. G. & Ralston, J. Dynamic wetting and dewetting of a low-energy surface by pure liquids. Langmuir 14, 7047–7051 (1998).

    Article  CAS  Google Scholar 

  23. Glasstone, S., Laidler, K. J. & Eyring, H. The Theory of Rate Processes; The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (McGraw-Hill, New York, 1941).

    Google Scholar 

  24. Tomsia, A. P., Saiz, E., Dalgleish, B. J. & Cannon, R. M. in Proceedings of the 4th International Japan Sampe Symposium 347–356 (Society for the Advancement of Material and Process Engineering, 1995).

    Google Scholar 

  25. Finnis, M. W. The theory of metal-ceramic interfaces. J. Phys. Condens. Matter 8, 5811–5836 (1996).

    Article  CAS  Google Scholar 

  26. Gumbsch, P. & Daw, M. S. Interface stresses and their effects on the elastic moduli of metallic multilayers. Phys. Rev. B 44, 3934–3938 (1991).

    Article  CAS  Google Scholar 

  27. de Ruijter, M. J., De Coninck, J., Blake, T. D., Clarke, A. & Rankin, A. Contact angle relaxation during the spreading of partially wetting drops. Langmuir 13, 7293–7298 (1997).

    Article  CAS  Google Scholar 

  28. Petrov, P. G. & Petrov, J. G. A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8, 1762–1767 (1992).

    Article  CAS  Google Scholar 

  29. Seebauer, E. G. & Allen, C. E. Estimating surface diffusion coefficients. Prog. Surface Sci. 49, 265–330 (1995).

    Article  CAS  Google Scholar 

  30. Lee, Y. W. & Aaronson, H. I. Surface concentration profile and surface energy in binary alloys. Surface Sci. 95, 227–224 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper benefited from discussions with M. Ruehle and R. M. Cannon and was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Saiz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saiz, E., Tomsia, A. Atomic dynamics and Marangoni films during liquid-metal spreading. Nature Mater 3, 903–909 (2004). https://doi.org/10.1038/nmat1252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing