Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy

Abstract

Immune escape is a crucial feature of cancer progression about which little is known. Elevation of the immunomodulatory enzyme indoleamine 2,3-dioxygenase (IDO) in tumor cells can facilitate immune escape. Not known is how IDO becomes elevated or whether IDO inhibitors will be useful for cancer treatment. Here we show that IDO is under genetic control of Bin1, which is attenuated in many human malignancies. Mouse knockout studies indicate that Bin1 loss elevates the STAT1- and NF-κB-dependent expression of IDO, driving escape of oncogenically transformed cells from T cell–dependent antitumor immunity. In MMTV-Neu mice, an established breast cancer model, we show that small-molecule inhibitors of IDO cooperate with cytotoxic agents to elicit regression of established tumors refractory to single-agent therapy. Our findings suggest that Bin1 loss promotes immune escape in cancer by deregulating IDO and that IDO inhibitors may improve responses to cancer chemotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bin1 loss promotes tumor formation by facilitating immune escape.
Figure 2: Bin1 loss potentiates the NF-κB- and STAT-dependent expression of Indo.
Figure 3: IDO inhibition counteracts the benefit of Bin1 loss to tumor formation.
Figure 4: IDO inhibition cooperates with paclitaxel to cause regression of autochthonous MMTV-Neu breast tumors.
Figure 5: MTH-trp is a potent bioactive inhibitor of IDO.
Figure 6: MTH-trp enhances paclitaxel efficacy.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4, 11–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Marincola, F.M., Jaffee, E.M., Hicklin, D.J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74, 181–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Sakamuro, D., Elliott, K., Wechsler-Reya, R. & Prendergast, G.C. BIN1 is a novel MYC-interacting protein with features of a tumor suppressor. Nat. Genet. 14, 69–77 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Elliott, K. et al. Bin1 functionally interacts with Myc in cells and inhibits cell proliferation by multiple mechanisms. Oncogene 18, 3564–3573 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ge, K. et al. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc. Natl. Acad. Sci. USA 96, 9689–9694 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ge, K. et al. Losses of the tumor suppressor Bin1 in breast carcinoma are frequent and reflect deficits in a programmed cell death capacity. Int. J. Cancer 85, 376–383 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Ge, K. et al. Loss of heterozygosity and tumor suppressor activity of Bin1 in prostate carcinoma. Int. J. Cancer 86, 155–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Tajiri, T. et al. Expression of a MYCN-interacting isoform of the tumor suppressor BIN1 is reduced in neuroblastomas with unfavorable biological features. Clin. Cancer Res. 9, 3345–3355 (2003).

    CAS  PubMed  Google Scholar 

  9. Muller, A.J., DuHadaway, J.B., Donover, P.S., Sutanto-Ward, E. & Prendergast, G.C. Targeted deletion of the suppressor gene Bin1/Amphiphysin2 enhances the malignant character of transformed cells. Cancer Biol. Ther. 3, published online 14 December 2004.

  10. Wigge, P. & McMahon, H.T. The amphiphysin family of proteins and their role in endocytosis at the synapse. Trends Neurosci. 21, 339–344 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Zelhof, A.C. et al. Drosophila Amphiphysin is implicated in protein localization and membrane morphogenesis but not in synaptic vesicle endocytosis. Development 128, 5005–5015 (2001).

    CAS  PubMed  Google Scholar 

  12. Muller, A.J. et al. Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol. Cell. Biol. 23, 4295–4306 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Routhier, E.L., Donover, P.S. & Prendergast, G.C. hob1+, the homolog of Bin1 in fission yeast, is dispensable for endocytosis but required for the response to starvation or genotoxic stress. Oncogene 22, 637–648 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Leprince, C. et al. Sorting nexin 4 and amphiphysin 2, a new partnership between endocytosis and intracellular trafficking. J. Cell Sci. 116, 1937–1948 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Peter, B.J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2003).

    Article  PubMed  Google Scholar 

  16. Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116, 445–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Munn, D.H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grohmann, U., Fallarino, F. & Puccetti, P. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol. 24, 242–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Munn, D.H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Friberg, M. et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int. J. Cancer 101, 151–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. DuHadaway, J.B., Sakamuro, D., Ewert, D.L. & Prendergast, G.C. Bin1 mediates apoptosis by c-Myc in transformed primary cells. Cancer Res. 16, 3151–3156 (2001).

    Google Scholar 

  23. Debrick, J.E., Campbell, P.A. & Staerz, U.D. Macrophages as accessory cells for class I MHC-restricted immune responses. J. Immunol. 147, 2846–2851 (1991).

    CAS  PubMed  Google Scholar 

  24. Bild, A.H., Turkson, J. & Jove, R. Cytoplasmic transport of Stat3 by receptor-mediated endocytosis. EMBO J. 21, 3255–3263 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimizu, F., Satoh, J., Tada, M. & Kumagai, K. Suppression of in vitro growth of virulent and avirulent herpes simplex viruses by cell-mediated immune mechanisms, antibody, and interferon. Infect. Immun. 22, 752–577 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Du, M.X., Sotero-Esteva, W.D. & Taylor, M.W. Analysis of transcription factors regulating induction of indoleamine 2,3-dioxygenase by IFN-gamma. J. Interferon Cytokine Res. 20, 133–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Mason, K. et al. Enhancement of tumor radioresponse by docetaxel: involvement of immune system. Int. J. Oncol. 18, 599–606 (2001).

    CAS  PubMed  Google Scholar 

  28. Brandt, R., Wong, A.M. & Hynes, N.E. Mammary glands reconstituted with Neu/ErbB2 transformed HC11 cells provide a novel orthotopic tumor model for testing anti-cancer agents. Oncogene 20, 5459–5465 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Kohl, N.E. et al. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat. Med. 1, 792–797 (1005).

    Article  Google Scholar 

  30. Littlejohn, T.K. et al. Expression and purification of recombinant human indoleamine 2,3-dioxygenase. Prot. Exp. Purif. 19, 22–29 (2000).

    Article  CAS  Google Scholar 

  31. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Huang, H. et al. Gene expression profiling of low-grade diffuse astrocytomas by cDNA arrays. Cancer Res. 60, 6868–6874 (2000).

    CAS  PubMed  Google Scholar 

  33. DuHadaway, J.B. et al. Immunohistochemical analysis of Bin1/Amphiphysin II in human tissues: Diverse sites of nuclear expression and losses in prostate cancer. J. Cell. Biochem. 88, 635–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Nowak, A.K., Robinson, B.W. & Lake, R.A. Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res. 63, 4490–4496 (2003).

    CAS  PubMed  Google Scholar 

  35. Machiels, J.P. et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 61, 3689–3697 (2001).

    CAS  PubMed  Google Scholar 

  36. Wechsler-Reya, R., Elliott, K., Herlyn, M. & Prendergast, G.C. The putative tumor suppressor BIN1 is a short-lived nuclear phosphoprotein whose localization is altered in malignant cells. Cancer Res. 57, 3258–3263 (1997).

    CAS  PubMed  Google Scholar 

  37. Wechsler-Reya, R., Elliott, K. & Prendergast, G.C. A role for the putative tumor suppressor Bin1 in muscle cell differentiation. Mol. Cell. Biol. 18, 566–575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meloni, A.R., Smith, E.J. & Nevins, J.R. A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc. Natl. Acad. Sci. USA 96, 9574–9579 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Vecchi, M. et al. Nucleocytoplasmic shuttling of endocytic proteins. J. Cell Biol. 153, 1511–1517 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. DuHadaway, J.B. et al. Transformation selective apoptosis by farnesyltransferase inhibitors requires Bin1. Oncogene 22, 3578–3588 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Elliott, K., Ge, K., Du, W. & Prendergast, G.C. The c-Myc-interacting adapter protein Bin1 activates a caspase-independent cell death program. Oncogene 19, 4669–4684 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Bernards, R., Dessain, S.K. & Weinberg, R.A. N-myc amplification causes down-modulation of MHC class I antigen expression in neuroblastoma. Cell 47, 667–674 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Versteeg, R., Noordermeer, I.A., Kruse-Wolters, M., Ruiter, D.J. & Schrier, P.I. c-myc down-regulates class I HLA expression in human melanomas. EMBO J. 7, 1023–1029 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boyland, E. & Willliams, D.C. The metabolism of tryptophan. 2. The metabolism of tryptophan in patients suffering from cancer of the bladder. Biochem. J. 64, 578–582 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rose, D. Tryptophan metabolism in carcinoma of the breast. Lancet 1, 239–241 (1967).

    Article  CAS  PubMed  Google Scholar 

  47. Munn, D.H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Gilmour, S.K., Birchler, M., Smith, M.K., Rayca, K. & Mostochuk, J. Effect of elevated levels of ornithine decarboxylase on cell cycle progression in skin. Cell Growth Differ. 10, 739–748 (1999).

    CAS  PubMed  Google Scholar 

  49. Koprowski, H. et al. Colorectal carcinoma antigens detected by hybridoma antibodies. Som. Cell Genet. 5, 957–972 (1979).

    Article  CAS  Google Scholar 

  50. Kruisbeek, A. In vivo depletion of CD4- and CD8-specific T cells. in Current Protocols in Immunology (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) p. 4.1.1–4.1.5 (John Wiley & Sons, Inc., New York, 1991).

    Google Scholar 

Download references

Acknowledgements

We thank J. Baker for providing assistance in generating primary keratinocytes from late-stage embyros and for characterizing transgene expression in transformed cell populations. This work was made possible by support from the Lankenau Hospital Foundation, by grants to A.J. Muller from the Sharpe Foundation of the Bryn Mawr Hospital and the State of Pennsylvania Department of Health (CURE/Tobacco Settlement Award), and by grants to G.C. Prendergast from the Department of Defense Breast Cancer Research Program (BC021133), the State of Pennsylvania Department of Health (CURE/Tobacco Settlement Award), and the Charlotte Geyer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C Prendergast.

Ethics declarations

Competing interests

George C. Prendergast is co-founder, president and chief scientific officer and significant stockholder in OncoRx, Inc., a start-up biotechnology company that aims to develop the therapeutic principle described in the manuscript. Alexander J. Muller is scientific co-founder and major stockholder in OncoRX, Inc; James B. DuHadaway is a stockholder in OncoRx, Inc. Prendergast, Muller, and DuHadaway are co-inventors on two published patents incorporating discoveries described in the manuscript: WO 2004 093871 'Novel methods for the treatment of cancer' (pending) and WO 2004 094409 'Novel IDO inhibitors and methods of use' (pending).

Supplementary information

Supplementary Fig. 1

Validation that 1MT administered by time-release pellets achieves sufficient systemic exposure to promote immune rejection of allogeneic concept. (PDF 138 kb)

Supplementary Fig. 2

Attenuation of Bin1 expression during the development of MMTV-Neu mammary tumors. (PDF 165 kb)

Supplementary Fig. 3

Immune competence is required for cooperativity of 1MT with paclitaxel. (PDF 74 kb)

Supplementary Fig. 4

Pharmacokinetic analysis of IDO inhibitors in mouse serum. (PDF 58 kb)

Supplementary Methods (PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, A., DuHadaway, J., Donover, P. et al. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med 11, 312–319 (2005). https://doi.org/10.1038/nm1196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1196

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing