Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory

Abstract

The basis of immune memory leading to heightened secondary antibody responses is a longstanding unanswered issue. Here we show that a single irreversible molecular change in the B cell antigen receptor, which is brought about by immunoglobulin M (IgM) to IgG isotype switching, is sufficient to greatly increase the extrafollicular proliferative burst of antigen-specific B cells. The unique membrane-spanning regions of IgG do not alter the T cell–dependent activation and proliferation of antigen-specific B cells in vivo, but markedly increase the number of progeny cells and plasmablasts that accumulate. These results establish a key molecular determinant of immunological memory and define an unexpected cellular basis by which it enhances the magnitude of secondary antibody responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seeding a primary antibody response with naïve B cells bearing high-affinity receptors confers memory-response characteristics when the receptors contain the unique IgG membrane tail.
Figure 2: The IgG membrane tail augments the production of AFCs.
Figure 3: The IgG membrane tail augments clonal expansion.
Figure 4: Heightened antibody responses by IgG and IgMG cells are independent of developmental state or other BCR specificities.
Figure 5: Heightened response is due to the membrane tail of IgG, not Tg line-to-line variation.
Figure 6: Burst-enhancing effect of the IgG membrane tail acts by reducing cell attrition.
Figure 7: The IgG-enhanced response occurs in the normal perifollicular and extrafollicular locations.

Similar content being viewed by others

References

  1. Dixon, F. J., Maurer, P. H. & Deichmiller, M. P. Primary and specific anamnestic antibody responses of rabbits to heterologous serum protein antigens. J. Immunol. 72, 179–186 (1954).

    CAS  PubMed  Google Scholar 

  2. Ahmed, R. & Gray, D. Immunological memory and protective immunity: Understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Celada, F. The cellular basis of immunologic memory. Progr. Allergy 15, 223–267 (1971).

    Article  CAS  Google Scholar 

  4. Gray, D. Immunological memory. Annu. Rev. Immunol. 11, 49–77 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Sprent, J. T & B memory cells. Cell 76, 315–322 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Hayakawa, K., Ishii, R., Yamasaki, K., Kishimoto, T. & Hardy, R. R. Isolation of high-affinity memory B cells: Phycoerythrin as a probe for antigen-binding cells. Proc. Natl Acad. Sci. USA 84, 1379–1383 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shittek, B. & Rajewsky, K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346, 749–751 (1990).

    Article  Google Scholar 

  8. Eisen, H. N. & Siskind, G. W. Variations in affinities of antibodies during the immune response. Biochemistry 3, 996–1007 (1964).

    Article  CAS  PubMed  Google Scholar 

  9. Weiss, U. & Rajewsky, K. The repertoire of somatic antibody mutants accumulating in the memory compartment after primary immunization is restricted through affinity maturation and mirrors that expressed in the secondary response. J. Exp. Med. 172, 1681–1689 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Klein, U., Rajewsky, K. & Kuppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188, 1679–1689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tangye, S. G., Liu, Y. J., Aversa, G., Phillips, J. H. & de Vries, J. E. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J. Exp. Med. 188, 1691–1703 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Y. J. et al. Memory B cells from human tonsils colonize mucosal epithelium and directly present antigen to T cells by rapid up-regulation of B7-1 and B7-2. Immunity 2, 239–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y. J., Zhang, J., Lane, P. J. L., Chan, E. Y.-T. & MacLennan, I. C. M. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21, 2951–2962 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Tierens, A., Delabie, J., Michiels, L., Vandenberghe, P. & De Wolf-Peeters, C. Marginal-zone B cells in the human lymph node and spleen show somatic hypermutations and display clonal expansion. Blood 93, 226–234 (1999).

    CAS  PubMed  Google Scholar 

  15. Maruyama, M., Lam, K. & Rajewsky, K. Memory B cell persistence is independent of persisting immunizing antigen. Nature 407, 636–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Reth, M. Antigen receptors on B lymphocytes. Annu. Rev. Immunol. 10, 97–121 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Nussenzweig, M. C. Immune responses: tails to teach a B cell. Curr. Biol. 7, 355–357 (1997).

    Article  Google Scholar 

  18. Weiser, P., Riesterer, C. & Reth, M. The internalization of the IgG2a antigen receptor does not require the association with Ig-α/Ig-β but the activation of protein tyrosine kinases doses. Eur. J. Immunol. 24, 665–671 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Knight, A. M., Lucocq, J. M., Prescott, A. R., Ponnanbalam, S. & Watts, C. Antigen endocytosis and presentation mediated by human membrane IgG1 in the absence of the Igα/Igβ dimer. EMBO J. 16, 3842–3850 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaisho, T., Schwenk, F. & Rajewsky, K. The roles of gamma 1 heavy chain membrane expression and cytoplasmic tail in IgG1 responses. Science 276, 412–415 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Achatz, G., Nitschke, L. & Lamers, M. C. Effect of transmembrane and cytoplasmic domains of IgE on the IgE response. Science 276, 409–411 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Brink, R. et al. Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen. J. Exp. Med. 176, 991–1005 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Pogue, S. L. & Goodnow, C. C. Gene dose-dependent maturation and receptor editing of B cells expressing immunoglobulin (Ig)G1 or IgM/IgG1 tail antigen receptors. J. Exp. Med. 191, 1031–1044 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ho, W. Y., Cooke, M. P., Goodnow, C. C. & Davis, M. M. Resting and anergic B cells are defective in CD28-dependent co-stimulation of naive CD4+ T cells. J. Exp. Med. 179, 1539–1549 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Pogue, S. L. & Goodnow, C. C. Ig heavy chain extracellular spacer confers unique glycosylation of the Mb-1 component of the B cell antigen receptor complex. J. Immunol. 152, 3925–3934 (1994).

    CAS  PubMed  Google Scholar 

  27. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Meth. 171, 131–137 (1994).

    Article  CAS  Google Scholar 

  28. Sze, D. M.-Y., Toellner, K.-M., Garcìa de Vinuesa, C., Taylor, D. R. & MacLennan, I. C. M. Intrinsic constraint on plasmablast growth and extrinsic limits of plasma cell survival. J. Exp. Med. 192, 813–821 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burnet, F. M. The clonal selection theory of acquired immunity (Cambridge University Press, London, 1959).

  30. Coffman, R. L. & Cohn, M. The class of surface immunoglobulin on virgin and memory B lymphocytes. J. Immunol. 118, 1806–1815 (1977).

    CAS  PubMed  Google Scholar 

  31. Yuan, D., Vitetta, E. S. & Kettman, J. R. Cell surface immunoglobulin. XX. Antibody responsiveness of subpopulations of B lymphocytes bearing different isotypes. J. Exp. Med. 145, 1421–1435 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Yefenof, E., Sanders, V. M., Uhr, J. W. & Vitetta, E. S. In vitro activation of murine antigen-specific memory B cells by a T-dependent antigen. J. Immunol. 137, 85–90 (1986).

    CAS  PubMed  Google Scholar 

  33. Toellner, K.-M., Gulbranson-Judge, A., Taylor, D. R., Sze, D. M.-Y. & MacLennan, I. C. M. Immunoglobulin switch transcript production in vivo related to the site and time of antigen-specific B cell activation. J. Exp. Med. 183, 2303–2312 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Vora, K. A., Tumas-Brundage, K. M. & Manser, T. A periarteriolar lymphoid sheath-associated B cell focus response is not observed during the development of the anti-arsonate germinal center reaction. J. Immunol. 160, 728–733 (1998).

    CAS  PubMed  Google Scholar 

  35. Arpin, C., Banchereau, J. & Liu, Y. J. Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing. J. Exp. Med. 186, 931–940 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doyle, A. M. et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J. Exp. Med. 194, 893–902 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gudmundsdottir, H., Wells, A. D. & Turka, L. A. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol. 162, 5212–5223 (1999).

    CAS  PubMed  Google Scholar 

  38. Hill, S. W. & Sercarz, E. E. Fine specificity of the H-2 linked immune response gene for the gallinaceous lysozymes. Eur. J. Immunol. 5, 317–324 (1975).

    Article  CAS  PubMed  Google Scholar 

  39. Warren, H. S. Using carboxyfluorescein diacetate succinimidyl ester to monitor human NK cell division: Analysis of the effect of activating and inhibitory class I MHC receptors. Immunol. Cell Biol. 77, 554–551 (1999).

    Google Scholar 

  40. Rathmell, J. C. & Goodnow, C. C. Effects of the lpr mutation on elimination and inactivation of self-reactive B cells. J. Immunol. 153, 2831–42 (1994).

    CAS  PubMed  Google Scholar 

  41. Goodnow, C. C., Crosbie, J., Jorgensen, H., Brink, R. A. & Basten, A. Induction of self-tolerance in mature peripheral B lymphocytes. Nature 342, 385–391 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Mason, D. Y., Jones, M. & Goodnow, C. C. Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme IgM/IgD transgenic mice. Int. Immunol. 4, 163–175 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Sullivan and the staff of the Medical Genome Centre for expert care and breeding of the transgenic mice and L. Wilson and A. Murtagh for expert genotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Goodnow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Web Figure 1.

Construct information and membrane tail BCR sequence from the various anti-HEL Ig–Tg lines used. Information is taken from descriptions of the MD423; MM422; MG2, MG6 and GG424 Tg lines and from a description of the constructs used to produce the MδE1 and MδE2 Tg lines26. LVDJ, rearranged variable region genes from the antiHEL hybridoma HyHEL10; Eμ, μ intronic enhancer; SR μ, intact μ switch region; SR μ*, μ switch region carrying a 2.8-kb internal deletion; SR μ/g, hybrid switch region between μ and g. Dashes indicate sequence identity with the μ Hc. (GIF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, S., Goodnow, C. Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory. Nat Immunol 3, 182–188 (2002). https://doi.org/10.1038/ni752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing