Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Follicular shuttling of marginal zone B cells facilitates antigen transport

Abstract

The splenic marginal zone is a site of blood flow, and the specialized B cell population that inhabits this compartment has been linked to the capture and follicular delivery of blood-borne antigens. However, the mechanism of this antigen transport has remained unknown. Here we show that marginal zone B cells were not confined to the marginal zone but continuously shuttled between the marginal zone and follicular areas, such that many of the cells visited a follicle every few hours. Migration to the follicle required the chemokine receptor CXCR5, whereas return to the marginal zone was promoted by the sphingosine 1-phosphate receptors S1P1 and S1P3. Treatment with an S1P1 antagonist caused displacement of marginal zone B cells from the marginal zone. Marginal zone–follicle shuttling of marginal zone B cells provides an efficient mechanism for systemic antigen capture and delivery to follicular dendritic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment for 3 h with the S1P1 antagonist VPC44116 causes displacement of marginal zone B cells into follicles.
Figure 2: Positioning of marginal zone B cells in the marginal zone is required for efficient binding of blood-borne antigen.
Figure 3: Positioning of marginal zone B cells in the marginal zone is required for efficient delivery of blood-borne immune complexes to FDCs, and expression of CXCR5 by B cells is necessary for deposition of TNP-Ficoll on FDCs.
Figure 4: In vivo antibody labeling provides evidence for marginal zone-follicle shuttling of marginal zone B cells in the absence of immunization.
Figure 5: Accumulation of FDC-M2 on marginal zone B cells of CXCR5-deficient mice.
Figure 6: Balance of S1P1 and CXCR5 responsiveness and S1P3 control marginal zone B cell shuttling.

Similar content being viewed by others

References

  1. Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    Article  CAS  Google Scholar 

  2. MacLennan, I.C.M., Gray, D., Kumararatne, D.S. & Bazin, H. The lymphocytes of splenic marginal zones: a distinct B-cell lineage. Immunol. Today 3, 305–307 (1982).

    Article  CAS  Google Scholar 

  3. Martin, F. & Kearney, J.F. Marginal-zone B cells. Nat. Rev. Immunol. 2, 323–335 (2002).

    Article  CAS  Google Scholar 

  4. Kraal, G. Cells in the marginal zone of the spleen. Int. Rev. Cytol. 132, 31–73 (1992).

    Article  CAS  Google Scholar 

  5. Nossal, G.J., Austin, C.M., Pye, J. & Mitchell, J. Antigens in immunity. XII. Antigen trapping in the spleen. Int. Arch. Allergy Appl. Immunol. 29, 368–383 (1966).

    Article  CAS  Google Scholar 

  6. Mitchell, J. & Abbot, A. Antigens in immunity. XVI. A light and electron microscope study of antigen localization in the rat spleen. Immunology 21, 207–224 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, J.C., Harris, G., Papamichail, M., Sljivic, V.S. & Holborow, E.J. The localization of aggregated human γ-globulin in the spleens of normal mice. Immunology 24, 955–968 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gray, D., Kumararatne, D.S., Lortan, J., Khan, M. & MacLennan, I.C. Relation of intra-splenic migration of marginal zone B cells to antigen localization on follicular dendritic cells. Immunology 52, 659–669 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Groeneveld, P.H., Erich, T. & Kraal, G. The differential effects of bacterial lipopolysaccharide (LPS) on splenic non-lymphoid cells demonstrated by monoclonal antibodies. Immunology 58, 285–290 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferguson, A.R., Youd, M.E. & Corley, R.B. Marginal zone B cells transport and deposit IgM-containing immune complexes onto follicular dendritic cells. Int. Immunol. 16, 1411–1422 (2004).

    Article  CAS  Google Scholar 

  11. Cinamon, G. et al. Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat. Immunol. 5, 713–720 (2004).

    Article  CAS  Google Scholar 

  12. Vora, K.A. et al. Sphingosine 1-phosphate receptor agonist FTY720-phosphate causes marginal zone B cell displacement. J. Leukoc. Biol. 78, 471–480 (2005).

    Article  CAS  Google Scholar 

  13. Schwab, S.R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    Article  CAS  Google Scholar 

  14. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    Article  CAS  Google Scholar 

  15. Rosen, H. & Goetzl, E.J. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat. Rev. Immunol. 5, 560–570 (2005).

    Article  CAS  Google Scholar 

  16. Rosen, H., Sanna, M.G., Cahalan, S.M. & Gonzalez-Cabrera, P.J. Tipping the gatekeeper: S1P regulation of endothelial barrier function. Trends Immunol. 28, 102–107 (2007).

    Article  CAS  Google Scholar 

  17. Lo, C.G., Xu, Y., Proia, R.L. & Cyster, J.G. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J. Exp. Med. 201, 291–301 (2005).

    Article  CAS  Google Scholar 

  18. Foss, F.W., Jr. et al. Synthesis and biological evaluation of gamma-aminophosphonates as potent, subtype-selective sphingosine 1-phosphate receptor agonists and antagonists. Bioorg. Med. Chem. 15, 663–667 (2007).

    Article  CAS  Google Scholar 

  19. Lo, C.G., Lu, T.T. & Cyster, J.G. Integrin-dependence of lymphocyte entry into the splenic white pulp. J. Exp. Med. 197, 353–361 (2003).

    Article  CAS  Google Scholar 

  20. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J.V. Absence of marginal zone B cells in Pyk-2 deficient mice define their role in the humoral response. Nat. Immunol. 1, 31–36 (2000).

    Article  CAS  Google Scholar 

  21. Sanchez, T. et al. Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J. Biol. Chem. 278, 47281–47290 (2003).

    Article  CAS  Google Scholar 

  22. Allende, M.L., Dreier, J.L., Mandala, S. & Proia, R.L. Expression of the sphingosine-1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 279, 15396–15401 (2004).

    Article  CAS  Google Scholar 

  23. Rickert, R.C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  Google Scholar 

  24. Martin, F. & Kearney, J.F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12, 39–49 (2000).

    Article  CAS  Google Scholar 

  25. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  Google Scholar 

  26. Ansel, K.M. et al. A chemokine driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  Google Scholar 

  27. Gretz, J.E., Norbury, C.C., Anderson, A.O., Proudfoot, A.E. & Shaw, S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J. Exp. Med. 192, 1425–1440 (2000).

    Article  CAS  Google Scholar 

  28. Nolte, M.A. et al. A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp. J. Exp. Med. 198, 505–512 (2003).

    Article  CAS  Google Scholar 

  29. Whipple, E.C., Shanahan, R.S., Ditto, A.H., Taylor, R.P. & Lindorfer, M.A. Analyses of the in vivo trafficking of stoichiometric doses of an anti-complement receptor 1/2 monoclonal antibody infused intravenously in mice. J. Immunol. 173, 2297–2306 (2004).

    Article  CAS  Google Scholar 

  30. Nolte, M.A., Hoen, E.N., van Stijn, A., Kraal, G. & Mebius, R.E. Isolation of the intact white pulp. Quantitative and qualitative analysis of the cellular composition of the splenic compartments. Eur. J. Immunol. 30, 626–634 (2000).

    Article  CAS  Google Scholar 

  31. Taylor, P.R. et al. The follicular dendritic cell restricted epitope, FDC-M2, is complement C4; localization of immune complexes in mouse tissues. Eur. J. Immunol. 32, 1888–1896 (2002).

    CAS  PubMed  Google Scholar 

  32. Pasparakis, M., Kousteni, S., Peschon, J. & Kollias, G. Tumor necrosis factor and the p55TNF receptor are required for optimal development of the marginal sinus and for migration of follicular dendritic cell precursors into splenic follicles. Cell. Immunol. 201, 33–41 (2000).

    Article  CAS  Google Scholar 

  33. Voigt, I. et al. CXCR5-deficient mice develop functional germinal centers in the splenic T cell zone. Eur. J. Immunol. 30, 560–567 (2000).

    Article  CAS  Google Scholar 

  34. Girkontaite, I. et al. The sphingosine-1-phosphate (S1P) lysophospholipid receptor S1P3 regulates MAdCAM-1+ endothelial cells in splenic marginal sinus organization. J. Exp. Med. 200, 1491–1501 (2004).

    Article  CAS  Google Scholar 

  35. Gunn, M.D. et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391, 799–803 (1998).

    Article  CAS  Google Scholar 

  36. Ngo, V.N. et al. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    Article  CAS  Google Scholar 

  37. Lu, T.T. & Cyster, J.G. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297, 409–412 (2002).

    Article  CAS  Google Scholar 

  38. Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol. 8, 1076–1085 (2007).

    Article  CAS  Google Scholar 

  39. Liu, C.H. et al. Ligand-induced trafficking of the sphingosine-1-phosphate receptor EDG-1. Mol. Biol. Cell 10, 1179–1190 (1999).

    Article  CAS  Google Scholar 

  40. Oo, M.L. et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists Induce ubiquitinylation and proteasomal degradation of the receptor. J. Biol. Chem. 282, 9082–9089 (2007).

    Article  CAS  Google Scholar 

  41. Gonzalez-Cabrera, P.J., Hla, T. & Rosen, H. Mapping pathways downstream of sphingosine 1-phosphate subtype 1 by differential chemical perturbation and proteomics. J. Biol. Chem. 282, 7254–7264 (2007).

    Article  CAS  Google Scholar 

  42. Veerman, A.J. & van Rooijen, N. Lymphocyte capping and lymphocyte migration as associated events in the in vivo antigen trapping process. An electron-microscopic autoradiographic study in the spleen of mice. Cell Tissue Res. 161, 211–217 (1975).

    Article  CAS  Google Scholar 

  43. Phan, T.G., Grigorova, I., Okada, T. & Cyster, J.G. Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat. Immunol. 8, 992–1000 (2007).

    Article  CAS  Google Scholar 

  44. Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961 (2000).

    Article  CAS  Google Scholar 

  45. Molina, H. et al. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc. Natl. Acad. Sci. USA 93, 3357–3361 (1996).

    Article  CAS  Google Scholar 

  46. Ansel, K.M., Harris, R.B. & Cyster, J.G. CXCL13 Is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16, 67–76 (2002).

    Article  CAS  Google Scholar 

  47. Förster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  Google Scholar 

  48. Kono, M. et al. The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J. Biol. Chem. 279, 29367–29373 (2004).

    Article  CAS  Google Scholar 

  49. Allen, C.D., Okada, T., Tang, H.L. & Cyster, J.G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Pereira for sharing in vivo labeling techniques; J. An and Y. Xu for technical help; R. Proia (National Institute of Diabetes and Digestive and Kidney Diseases) for S1P1- and S1P3-deficient mice; M. Lipp (Max Delbrück Center of Molecular Medicine;) and R. Forster (Hannover Medical School) for CXCR5-deficient mice; X. Wu and J. Atkinson (Washington University School of Medicine) for Cr2−/− mice; K. Rajewsky (The CBR Institute for Biomedical Research, Harvard Medical School) for CD19-Cre mice; K. Lynch and T. MacDonald (University of Virginia Medical Center) for VPC44116; C. Allen for help with the LSRII; L. Shiow for discussions; and T. Phan for comments on the manuscript. Supported by the Howard Hughes Medical Institute (G.C. and J.G.C.) and the National Institutes of Health (AI40098).

Author information

Authors and Affiliations

Authors

Contributions

G.C. and J.G.C. designed and conceptualized the research; G.C. did the experiments; M.A.Z. was involved in several in vivo labeling experiments; O.M.L. helped with animal management and genotyping; F.W.F. generated VPC44116; and G.C. and J.G.C. analyzed the data and prepared the manuscript.

Corresponding author

Correspondence to Jason G Cyster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cinamon, G., Zachariah, M., Lam, O. et al. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9, 54–62 (2008). https://doi.org/10.1038/ni1542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1542

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing