Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death

Abstract

Regulated glycosylation controls T cell processes, including activation, differentiation and homing by creating or masking ligands for endogenous lectins. Here we show that stimuli promoting T helper type 1 (TH1), TH2 or interleukin 17–producing T helper (TH-17) differentiation can differentially regulate the glycosylation pattern of T helper cells and modulate their susceptibility to galectin-1, a glycan-binding protein with anti-inflammatory activity. Although TH1- and TH-17–differentiated cells expressed the repertoire of cell surface glycans critical for galectin-1–induced cell death, TH2 cells were protected from galectin-1 through differential sialylation of cell surface glycoproteins. Consistent with those findings, galectin-1–deficient mice developed greater TH1 and TH-17 responses and enhanced susceptibility to autoimmune neuroinflammation. Our findings identify a molecular link among differential glycosylation of T helper cells, susceptibility to cell death and termination of the inflammatory response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential susceptibility of human TH1 and TH2 cells to galectin-1-induced cell death.
Figure 2: Differential binding of galectin-1 to human TH1 and TH2 cells.
Figure 3: Differential glycosylation of human TH1 and TH2 cells selectively regulates susceptibility to galectin-1-induced cell death.
Figure 4: Glycosylation profiles and susceptibility to galectin-1-induced death of in vivo–generated TH1 and TH2 cells.
Figure 5: Critical function for galectin-1 in the negative regulation of TH1 responses.
Figure 6: TH-17-differentiated cells share a common glycan motif with TH1 cells, which can be targeted by galectin-1.
Figure 7: Galectin-1 deficiency results in enhanced susceptibility to autoimmune neuroinflammation with increased TH-17 and TH1 bias in vivo. (a) Disease progression of wild-type and Lgals1−/− mice (129/Sv) immunized with MOG(35–55).
Figure 8: Galectin-1 limits the frequency of MOG(35–55)-reactive IL-17- and IFN-γ-producing CD4+ T cells in vivo.

Similar content being viewed by others

References

  1. Coffman, R.L. Origins of the TH1-TH2 model: a personal perspective. Nat. Immunol. 7, 539–541 (2006).

    Article  CAS  Google Scholar 

  2. Bettelli, E., Oukka, M. & Kuchroo, V.K. TH-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8, 345–350 (2007).

    Article  CAS  Google Scholar 

  3. Steinman, L. A brief history of TH-17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    Article  CAS  Google Scholar 

  4. Glimcher, L.H. & Murphy, K.M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  5. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  6. Harrington, L.E. et al. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  7. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  8. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH-17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  9. Veldhoen, M., Hocking, R.J., Flavell, R.A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    Article  CAS  Google Scholar 

  10. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH-17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  11. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  12. Daniels, M.A., Hogquist, K.A. & Jameson, S.C. Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat. Immunol. 3, 903–910 (2002).

    Article  CAS  Google Scholar 

  13. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J.W. Negative regulation of T cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    Article  CAS  Google Scholar 

  14. Comelli, E.M. et al. Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N-linked glycans. J. Immunol. 177, 2431–2440 (2006).

    Article  CAS  Google Scholar 

  15. Morgan, R. et al. N-acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J. Immunol. 173, 7200–7208 (2004).

    Article  CAS  Google Scholar 

  16. Lim, Y.C. et al. IL-12, STAT4-dependent up-regulation of CD4+ T cell core 2 β-1,6-N-acetylglucosaminyltransferase, an enzyme essential for biosynthesis of P-selectin ligands. J. Immunol. 167, 4476–4484 (2001).

    Article  CAS  Google Scholar 

  17. Underhill, G.H. et al. A crucial role for T-bet in selectin ligand expression in T helper 1 (Th1) cells. Blood 106, 3867–3873 (2005).

    Article  CAS  Google Scholar 

  18. Mitoma, J. et al. Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat. Immunol. 8, 409–418 (2007).

    Article  CAS  Google Scholar 

  19. Chen, G.Y., Osada, H., Santamaria-Babi, L.F. & Kannagi, R. Interaction of GATA-3/T-bet transcription factors regulates expression of sialyl Lewis X homing receptors on Th1/Th2 lymphocytes. Proc. Natl. Acad. Sci. USA 103, 16894–16899 (2006).

    Article  CAS  Google Scholar 

  20. Gabius, H.J. Cell surface glycans: the why and how of their functionality as biochemical signals in lectin-mediated information transfer. Crit. Rev. Immunol. 26, 43–79 (2006).

    Article  CAS  Google Scholar 

  21. van Vliet, S.J., Gringhuis, S.I., Geijtenbeek, T.B. & van Kooyk, Y. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat. Immunol. 7, 1200–1208 (2006).

    Article  CAS  Google Scholar 

  22. Rabinovich, G.A. et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313–320 (2002).

    Article  CAS  Google Scholar 

  23. Perillo, N.L., Pace, K.E., Seilhamer, J.J. & Baum, L.G. Apoptosis of T cells mediated by galectin-1. Nature 378, 736–739 (1995).

    Article  CAS  Google Scholar 

  24. Garin, M.I. et al. Galectin-1: a key effector of regulation mediated by CD4+ CD25+ T cells. Blood 109, 2058–2065 (2007).

    Article  CAS  Google Scholar 

  25. Rabinovich, G.A. et al. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J. Exp. Med. 190, 385–398 (1999).

    Article  CAS  Google Scholar 

  26. Santucci, L. et al. Galectin-1 suppresses experimental colitis in mice. Gastroenterology 124, 1381–1394 (2003).

    Article  CAS  Google Scholar 

  27. Offner, H. et al. Recombinant human β-galactoside binding lectin suppresses clinical and histological signs of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 28, 177–184 (1990).

    Article  CAS  Google Scholar 

  28. Rubinstein, N. et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell 5, 241–251 (2004).

    Article  CAS  Google Scholar 

  29. Hannier, S., Bitegye, C. & Demotz, S. Early events of TCR signaling are distinct in human Th1 and Th2 cells. J. Immunol. 169, 1904–1911 (2002).

    Article  CAS  Google Scholar 

  30. Stillman, B.N. et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J. Immunol. 176, 778–789 (2006).

    Article  CAS  Google Scholar 

  31. Hirabayashi, J. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002).

    Article  CAS  Google Scholar 

  32. Stowell, S.R. et al. Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides. Glycobiology 14, 157–167 (2004).

    Article  CAS  Google Scholar 

  33. Galvan, M., Tsuboi, S., Fukuda, M. & Baum, L.G. Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J. Biol. Chem. 275, 16730–16737 (2000).

    Article  CAS  Google Scholar 

  34. Priatel, J.J. et al. The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12, 273–283 (2000).

    Article  CAS  Google Scholar 

  35. Amano, M., Galvan, M., He, J. & Baum, L.G. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation and T cell death. J. Biol. Chem. 278, 7469–7475 (2003).

    Article  CAS  Google Scholar 

  36. Grabie, N. et al. β-galactoside α2,3-sialyltransferase-I gene expression during Th2 but not Th1 differentiation: implications for core2-glycan formation on cell surface proteins. Eur. J. Immunol. 32, 2766–2772 (2002).

    Article  CAS  Google Scholar 

  37. Cervi, L., MacDonald, A.S., Kane, C., Dzierszinski, F. & Pearce, E.J. Cutting edge: dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J. Immunol. 172, 2016–2020 (2004).

    Article  CAS  Google Scholar 

  38. Pulendran, B. Modulating TH1/TH2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol. Res. 29, 187–196 (2004).

    Article  CAS  Google Scholar 

  39. Zhu, C. et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6, 1245–1252 (2005).

    Article  CAS  Google Scholar 

  40. Lenardo, M. et al. Mature T lymphocyte apoptosis–immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999).

    Article  CAS  Google Scholar 

  41. Zhang, X. et al. Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med. 185, 1837–1849 (1997).

    Article  CAS  Google Scholar 

  42. Blaser, C. et al. β-galactoside-binding protein secreted by activated T cells inhibits antigen-induced proliferation of T cells. Eur. J. Immunol. 28, 2311–2319 (1998).

    Article  CAS  Google Scholar 

  43. Chui, D. et al. Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc. Natl. Acad. Sci. USA 98, 1142–1147 (2001).

    Article  CAS  Google Scholar 

  44. Daniels, M.A. et al. CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 15, 1051–1061 (2001).

    Article  CAS  Google Scholar 

  45. Jenner, J., Kerst, G., Handgretinger, R. & Müller, I. Increased α2,6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells. Exp. Hematol. 34, 1212–1218 (2006).

    Article  CAS  Google Scholar 

  46. Brennan, P.J. et al. Sialylation regulates peripheral tolerance in CD4+ T cells. Int. Immunol. 18, 627–635 (2006).

    Article  CAS  Google Scholar 

  47. Kaneko, Y., Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  Google Scholar 

  48. van der Leij, J. et al. Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol. Immunol. 44, 506–513 (2007).

    Article  CAS  Google Scholar 

  49. Vespa, G.N. et al. Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibits IL-2 production and proliferation. J. Immunol. 162, 799–806 (1999).

    CAS  PubMed  Google Scholar 

  50. Stumhofer, J.S. et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7, 937–945 (2006).

    Article  CAS  Google Scholar 

  51. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  Google Scholar 

  52. Poirier, F. & Robertson, E.J. Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin. Development 119, 1229–1236 (1993).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Rosenberg for critical reading of the manuscript; J. Hirabayashi, K.I Kasai and F.T. Liu for plasmids; C. Stanley, L. Campagna, M. Barboza, M. Vermeulen and the staff of the Animal Facility (Facultad de Ciencias Exactas y Naturales, University of Buenos Aires) for technical assistance; and G. Vasta, L. Steinman, M. Lenardo, L. Glimcher, R. Schreiber, C. Weaver, N. Rubinstein, L. Fainboim and J. Geffner for comments or advice. Rabbit antiserum to ST6Gal1 was from K. Colley (University of Illinois, Chicago) and endotoxin-free SEA was from M. Doenhoff (University of Wales). Supported by the Cancer Research Institute (G.A.R.), the Mizutani Foundation for Glycoscience (G.A.R.), the Sales Foundation (G.A.R.), the National Agency for Promotion of Science and Technology (G.A.R.), the Wellcome Trust (G.A.R. and E.M.R.), the University of Buenos Aires (G.A.R.), the Bunge & Born Foundation (G.A.R.), the Fiorini Foundation (G.A.R.), the National Institutes of Health (L.G.B. and J.D.H.), Ligue Contre le Cancer (F.P.), the John Simon Guggenheim Memorial Foundation (G.A.R.) and The National Research Council for Scientific and Technical Investigations (G.A.R. and N.W.Z.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.T. designed and did experiments and contributed to manuscript preparation; G.A.B. and J.M.I. designed and did experiments; D.O.C. assisted with histological data; J.C. assisted with EAE experiments; F.P. provided Lgals1−/− mice and advice; N.W.Z., J.D.H., L.G.B. and E.M.R. contributed reagents and to the design of experiments and writing of the manuscript; and G.A.R. conceptualized and supervised the work, designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Gabriel A Rabinovich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 1347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toscano, M., Bianco, G., Ilarregui, J. et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat Immunol 8, 825–834 (2007). https://doi.org/10.1038/ni1482

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1482

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing