Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

microRNA target predictions in animals

Abstract

In recent years, microRNAs (miRNAs) have emerged as a major class of regulatory genes, present in most metazoans and important for a diverse range of biological functions. Because experimental identification of miRNA targets is difficult, there has been an explosion of computational target predictions. Although the initial round of predictions resulted in very diverse results, subsequent computational and experimental analyses suggested that at least a certain class of conserved miRNA targets can be confidently predicted and that this class of targets is large, covering, for example, at least 30% of all human genes when considering about 60 conserved vertebrate miRNA gene families. Most recent approaches have also shown that there are correlations between domains of miRNA expression and mRNA levels of their targets. Our understanding of miRNA function is still extremely limited, but it may be that by integrating mRNA and miRNA sequence and expression data with other comparative genomic data, we will be able to gain global and yet specific insights into the function and evolution of a broad layer of post-transcriptional control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two classes of miRNA target sites in animals.
Figure 2: Experimental test of predicted miRNA/mRNA regulatory relationships in Drosophila melanogaster.

References

  1. Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B. & Cohen, S.M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Article  CAS  Google Scholar 

  2. Stark, A., Brennecke, J., Russell, R.B. & Cohen, S.M. Identification of Drosophila microRNA targets. PLoS Biol. 1, E60 (2003).

    Article  Google Scholar 

  3. Enright, A.J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).

    Article  Google Scholar 

  4. Rajewsky, N. & Socci, N.D. Computational identification of microRNA targets. Dev. Biol. 267, 529–535 (2004).

    Article  CAS  Google Scholar 

  5. John, B. et al. Human MicroRNA targets. PLoS Biol. 2, e363 (2004).

    Article  Google Scholar 

  6. Kiriakidou, M. et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178 (2004).

    Article  CAS  Google Scholar 

  7. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  Google Scholar 

  8. Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).

    Article  CAS  Google Scholar 

  9. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  10. Bentwich, I. Prediction and validation of microRNAs and their targets. FEBS Lett. 579, 5904–5910 (2005).

    Article  CAS  Google Scholar 

  11. Sood, P., Krek, A., Zavolan, M., Macino, G. & Rajewsky, N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. USA, published online 13 February 2006 (doi:10.1073/pnas.0511045103).

  12. Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039 (2006).

    Article  CAS  Google Scholar 

  13. Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  Google Scholar 

  14. Robins, H. & Press, W.H. Human microRNAs target a functionally distinct population of genes with AT-rich 3′ UTRs. Proc. Natl. Acad. Sci. USA 102, 15557–15562 (2005).

    Article  CAS  Google Scholar 

  15. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  Google Scholar 

  16. Grün, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C. & Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13 (2005).

    Article  Google Scholar 

  17. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  Google Scholar 

  18. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  19. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  Google Scholar 

  20. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005).

    Article  CAS  Google Scholar 

  21. Lall, S. et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr. Biol. 16, 460–471 (2006).

    Article  CAS  Google Scholar 

  22. Robins, H., Li, Y. & Padgett, R.W. Incorporating structure to predict microRNA targets. Proc. Natl. Acad. Sci. USA 102, 4006–4009 (2005).

    Article  CAS  Google Scholar 

  23. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  CAS  Google Scholar 

  24. Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  Google Scholar 

  25. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  26. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    Article  CAS  Google Scholar 

  27. Chan, C.S., Elemento, O. & Tavazoie, S. Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Comput. Biol. 1, e69 (2005).

    Article  Google Scholar 

  28. Watanabe, Y. et al. Computational analysis of microRNA targets in Caenorhabditis elegans. Gene 365, 2–10 (2006).

    Article  CAS  Google Scholar 

  29. Sethupathy, P., Corda, B. & Hatzigeorgiou, A.G. TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA 12, 192–197 (2006).

    Article  CAS  Google Scholar 

  30. Shahi, P. et al. Argonaute–a database for gene regulation by mammalian microRNAs. Nucleic Acids Res. 34, D115–D118 (2006).

    Article  CAS  Google Scholar 

  31. Hsu, P.W. et al. miRNAMAP: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 34, D135–D139 (2006).

    Article  CAS  Google Scholar 

  32. Montgomery, S.B. et al. ORegAnno: an open access database and curation system for literature-derived promoters, transcription factor binding sites and regulatory variation. Bioinformatics 22, 637–640 (2006).

    Article  CAS  Google Scholar 

  33. Doench, J.G. & Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  Google Scholar 

  34. Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005).

    Article  CAS  Google Scholar 

  35. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  Google Scholar 

  36. Bagga, S. et al. Regulation by let-7 and lin-4 microRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

    Article  CAS  Google Scholar 

  37. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  Google Scholar 

  38. Bartel, D.P. & Chen, C.Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).

    Article  CAS  Google Scholar 

  39. Bussemaker, H.J., Li, H. & Siggia, E.D. Regulatory element detection using correlation with expression. Nat. Genet. 27, 167–171 (2001).

    Article  CAS  Google Scholar 

  40. Foat, B.C., Houshmandi, S.S., Olivas, W.M. & Bussemaker, H.J. Profiling condition-specific, genome-wide regulation of mRNA stability in yeast. Proc. Natl. Acad. Sci. USA 102, 17675–17680 (2005).

    Article  CAS  Google Scholar 

  41. Aravin, A.A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    Article  CAS  Google Scholar 

  42. Chen, P.Y. et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev. 19, 1288–1293 (2005).

    Article  CAS  Google Scholar 

  43. Baskerville, S. & Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).

    Article  CAS  Google Scholar 

  44. Barad, O. et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 14, 2486–2494 (2004).

    Article  CAS  Google Scholar 

  45. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  46. Hammond, S.M. microRNA detection comes of age. Nat. Methods 3, 12–3 (2006).

    Article  CAS  Google Scholar 

  47. Burgler, C. & Macdonald, P.M. Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method. BMC Genomics 6, 88 (2005).

    Article  Google Scholar 

  48. Poy, M.N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004).

    Article  CAS  Google Scholar 

  49. Vella, M.C. et al. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′ UTR. Genes Dev. 18, 132–137 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Writing a perspective in a new and fast-moving field is necessarily selective on which papers are being cited. However, I would like to apologize to all authors whose papers were not included. I also want to thank A. Stark, U. Ohler and S. Lall for a critical reading of the manuscript and helpful suggestions, and my collaborators and members of the miRNA/RNAi community for many interesting and stimulating discussions. J. Thierry-Mieg and D. Thierry-Mieg as well as W. Majoros and U. Ohler shared unpublished data with me. Finally, I thank A. Stark and S. Cohen for permission to use Figure 2.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajewsky, N. microRNA target predictions in animals. Nat Genet 38 (Suppl 6), S8–S13 (2006). https://doi.org/10.1038/ng1798

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing