Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3

Abstract

CpG islands are present in one-half of all human and mouse genes and typically overlap with promoters or exons. We developed a method for high-resolution analysis of the methylation status of CpG islands genome-wide, using arrays of BAC clones and the methylation-sensitive restriction enzyme NotI. Here we demonstrate the accuracy and specificity of the method. By computationally mapping all NotI sites, methylation events can be defined with single-nucleotide precision throughout the genome. We also demonstrate the unique expandability of the array method using a different methylation-sensitive restriction enzyme, BssHII. We identified and validated new CpG island loci that are methylated in a tissue-specific manner in normal human tissues. The methylation status of the CpG islands is associated with gene expression for several genes, including SHANK3, which encodes a structural protein in neuronal postsynaptic densities. Defects in SHANK3 seem to underlie human 22q13 deletion syndrome. Furthermore, these patterns for SHANK3 are conserved in mice and rats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of methylation differences using a BAC clone array.
Figure 2: The log2 ratios of cohybridizations of NotI fragments did not have either intensity-dependent effects or geographic location-specific effects.
Figure 3: Detection of methylation differences between cell types using NotI or BssHII.
Figure 4: Validation of the array results by bisulfite-sequencing and gene-expression analysis.
Figure 5: Evolutionary conservation of tissue-specific CpG island methylation and gene expression in SHANK3.

Similar content being viewed by others

References

  1. Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Trasler, J.M., Trasler, D.G., Bestor, T.H., Li, E. & Ghibu, F. DNA methyltransferase in normal and Dnmtn/Dnmtn mouse embryos. Dev. Dyn. 206, 239–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, R.Z., Pettersson, U., Beard, C., Jackson-Grusby, L. & Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. Nature 395, 89–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Maraschio, P., Zuffardi, O., Dalla Fior, T. & Tiepolo, L. Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J. Med. Genet. 25, 173–180 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hansen, R.S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA 96, 14412–14417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, G.L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. McClelland, M. & Ivarie, R. Asymmetrical distribution of CpG in an 'average' mammalian gene. Nucleic Acids Res. 10, 7865–7877 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bird, A., Taggart, M., Frommer, M., Miller, O.J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40, 91–99 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Gardiner-Garden, M. & Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 196, 261–282 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Larsen, F., Gundersen, G., Lopez, R. & Prydz, H. CpG islands as gene markers in the human genome. Genomics 13, 1095–1107 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Takai, D. & Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 99, 3740–3745 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Surani, M.A. Imprinting and the initiation of gene silencing in the germ line. Cell 93, 309–312 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Gartler, S.M., Dyer, K.A. & Goldman, M.A. Mammalian X chromosome inactivation. Mol. Genet. Med. 2, 121–160 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Hershko, A.Y., Kafri, T., Fainsod, A. & Razin, A. Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene 302, 65–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Song, F. et al. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc. Natl. Acad. Sci. USA 102, 3336–3341 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rakyan, V.K. et al. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol. 2, e405 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Smet, C., Lurquin, C., Lethe, B., Martelange, B. & Boon, T. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol. Cell. Biol. 19, 7327–7335 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Futscher, B.W. et al. Role for DNA methylation in the control of cell type-specific maspin expression. Nat. Genet. 31, 175–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 1289 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Antequera, F. & Bird, A. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 90, 11995–11999 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Albertson, D.G. et al. Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat. Genet. 25, 144–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Hodgson, G. et al. Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nat. Genet. 29, 459–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Snijders, A.M. et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat. Genet. 29, 263–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Snijders, A.M. et al. Mapping segmental and sequence variations among laboratory mice using BAC array CGH. Genome Res. 15, 302–311 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishkanian, A.S. et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat. Genet. 36, 299–303 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Lindsay, S. & Bird, A.P. Use of restriction enzymes to detect potential gene sequences in mammalian DNA. Nature 327, 336–338 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. Costello, J.F. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet. 24, 132–138 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Qualmann, B., Boeckers, T.M., Jeromin, M., Gundelfinger, E.D. & Kessels, M.M. Linkage of the actin cytoskeleton to the postsynaptic density via direct interactions of Abp1 with the ProSAP/Shank family. J. Neurosci. 24, 2481–2495 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson, H.L. et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J. Med. Genet. 40, 575–584 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watt, J.L. et al. A familial pericentric inversion of chromosome 22 with a recombinant subject illustrating a 'pure' partial monosomy syndrome. J. Med. Genet. 22, 283–287 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Phelan, M.C. et al. 22q13 deletion syndrome. Am. J. Med. Genet. 101, 91–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Bonaglia, M.C. et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am. J. Hum. Genet. 69, 261–268 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Huang, T.H. et al. Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique. Cancer Res. 57, 1030–1034 (1997).

    CAS  PubMed  Google Scholar 

  37. Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ehrlich, M. et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues and cells. Nucleic Acids Res. 10, 2709–2721 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lorincz, M.C., Dickerson, D.R., Schmitt, M. & Groudine, M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat. Struct. Mol. Biol. 11, 1068–1075 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Desmet, C. et al. The activation of human gene Mage-1 in tumor cells is correlated with genome-wide demethylation. Proc. Natl. Acad. Sci. USA 93, 7149–7153 (1996).

    Article  CAS  Google Scholar 

  41. Jain, A.J. et al. Fully automatic quantification of microarray image data. Genome Res. 12, 325–332 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ihaka, R. & Gentleman, R. A language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).

    Google Scholar 

  43. Grunau, C., Clark, S.J. & Rosenthal, A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29, e65 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Nakamura for providing rat tissues. This work was supported by the California Breast Cancer Research Program (T.T.C.), Howard Hughes Medical Institute (P.J.), American Brain Tumor Association (C.H.) and US National Institutes of Health (J.F.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph F Costello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The log2 ratios of cohybridizations of BssHII fragments do not exhibit intensity-dependent effects nor geographic location-specific effects. (PDF 238 kb)

Supplementary Fig. 2

Maps of the chromosomal loci corresponding to BAC clones and their loci that exhibit tissue-specific methylation. (PDF 61 kb)

Supplementary Fig. 3

The tissue-specific CpG island methylation and gene expression of SHANK3 is conserved in rat brain and PBL. (PDF 84 kb)

Supplementary Table 1

Primer sequences and cycling conditions. (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ching, TT., Maunakea, A., Jun, P. et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet 37, 645–651 (2005). https://doi.org/10.1038/ng1563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing