Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly

Abstract

The tissue–specific organization of collagen molecules into tridimensional macroaggregates determines the physiomechanical properties of most connective tissues, but the factors and mechanisms controlling this process are unknown. It has been postulated that quantitatively minor types V and XI collagen regulate the growth of type I and II collagen fibrils, respectively. To test this hypothesis, we created mice that produce a structurally abnormal α2(V) collagen chain. Homozygous mutant mice survive poorly, possibly because of complications from spinal deformities, and exhibit skin and eye abnormalities caused by disorganized type I collagen fibrils. Our results demonstrate that type V collagen is a key determinant in the assembly of tissue–specific matrices, and provide an animal model for human connective tissue disorders

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prockop, D.J. Mutations that alter the primary structure of type I collagen. J. biol. Chem. 265, 15349–15352 (1990).

    CAS  PubMed  Google Scholar 

  2. Birk, D.E., Silver, F.H. & Trelstad, R.L., Martrix Assembly. in Cell Biology of Extracellular Matrix (ed. Hay, E.D.) 221–254 (Plenum Press, New York, 1991).

    Chapter  Google Scholar 

  3. Birk, D.E., Fitch, J.M., Babiarz, J.P., Doane, K.J. & Linsenmayer, T.F. Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter. J. cell. Sci. 95, 649–657 (1990).

    CAS  PubMed  Google Scholar 

  4. Fäsaler, R. et al. Mice lacking α1(IX)collagen develop noninflamatory degenerative joint disease. Proc. natn. Acad. Sci. U.S.A 91, 5070–6074 (1994).

    Article  Google Scholar 

  5. Rosati, R. et al. Normal long bone growth and development in type X collagen-null mice. Nature Genet. 8, 129–135 (1994).

    Article  CAS  Google Scholar 

  6. Vuorio, E. & de Crombrugghe, B. The family of collagen genes. A. Rev. Biochem. 59, 837–872 (1990).

    Article  CAS  Google Scholar 

  7. Rook, A. & Dawber, R., Diseases of the Hair and Scalp. (Blackwell Scientific. Oxford, 1982).

    Google Scholar 

  8. Hay, E.D. Development of the vertebrate cornea. Int. Rev. Cytol. 63, 263–322 (1979).

    Article  Google Scholar 

  9. Birk, D.E. & Trelstad, R.L. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J. Cell Biol. 99, 2024–2033 (1984).

    Article  CAS  Google Scholar 

  10. Tseng, S.C.G., Smuckler, D. & Stern, R. Comparison of collagen types in adult and fetal bovine corneas. J. biol. Chem. 257, 2627–2633 (1982).

    CAS  PubMed  Google Scholar 

  11. Birk, D.E., Fitch, J.M., Babiarz, J.P. & Linsenmayer, T.F. Collagen type I and type V are present in the same fibril in the avian corneal stroma. J. Cell Biol. 106, 999–1008 (1988).

    Article  CAS  Google Scholar 

  12. Linsenmayer, T.F. et al. Type V collagen: molecular structure and fibrillar organization of the chicken α1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J. Cell Biol. 121, 1181–1189 (1993).

    Article  CAS  Google Scholar 

  13. Moradi-Améli, M. et al. Diversity in the processing events at the N-terminus of collagen V. Eur. J. Biochem. 221, 987–995 (1994).

    Article  Google Scholar 

  14. Bonadio, J. et al. Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. Proc. natn. Acad. Sci. U.S.A. 87, 7145–7149 (1990).

    Article  CAS  Google Scholar 

  15. Andrikopoulos, K., Suzuki, H.R., Solursh, M. & Ramirez, F. Localization of pro-α2(V) collagen transcripts in the tissues of the developing mouse embryo. Dev. Dyn. 195, 113–120 (1992).

    Article  CAS  Google Scholar 

  16. Saga, Y., Yagi, T., Ikawa, Y., Sakakura, T. & Aizawa, S. Mice develop normally without tenascin. Genes Dev. 6, 1821–1831 (1992).

    Article  CAS  Google Scholar 

  17. Kratochwil, K., Dziadek, M., Lohler, J., Harbers, K. & Jaenisch, R. Normal epithelial branching morphogenesis in the absence of collagen I. Dev. Biol. 117, 596–606 (1986).

    Article  CAS  Google Scholar 

  18. Byers, P.H. & Holbrook, K.A. Ehlers-Danlos Syndrome. in Principles and practice of medical genetics (eds Emery. A.E.H. & Rimoin, D.L.) 1065–1081 (Churchill Livingstone, Edinburgh, 1990).

    Google Scholar 

  19. Li, Y. et al. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell (In the press).

  20. Tybulewicz, V.L.J., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl protooncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  21. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  22. Bradley, A. Production and analysis of chimearic mice. In Teratocarcinomas and embryonic stem cells: a practical approach (ed. Robertson, E.J.) 113–151 (IRL Press, Oxford, 1987).

    Google Scholar 

  23. Sambrook, E., Fritsch, E.F. & Maniatis, T. Molecular cloning: a laboratory manual 1–545 (Cold Spring Harbor, New York, 1989).

    Google Scholar 

  24. Broek, D.L., Madri, J., Elkenberry, E.F. & Brodsky, B. Characterization of the tissue form of type V collagen from chick bone. J. biol. Chem. 260, 555–562 (1985).

    CAS  PubMed  Google Scholar 

  25. Woodbury, D., Benson, C.V. & Ramirez, F. Amino-terminal propeptide of human pro-α2(V) collagen conforms to the structural criteria of a fibrillar procoliagen molecule. J. biol. Chem. 284, 2735–2738 (1989).

    Google Scholar 

  26. Glorieux, F.H., Salle, B.L., Travers, R. & Audra, P.H. Dynamic histomorphometric evaluation of human fetal bone formation. Bone 12, 377–381 (1991).

    Article  CAS  Google Scholar 

  27. Lufkin, T., Mark, M., Hart, C.P., LeMeur, M. & Chambon, P. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its postral domain of expression. Cell 66, 1105–1119 (1992).

    Article  Google Scholar 

  28. Keene, D.R., Engvall, E. & Glanville, R.W. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J. Cell Biol. 107, 1995–2006 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrikopoulos, K., Liu, X., Keene, D. et al. Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nat Genet 9, 31–36 (1995). https://doi.org/10.1038/ng0195-31

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0195-31

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing