Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging the painful osteoarthritic knee joint: what have we learned?

Abstract

Pain in the peripheral joints is an increasingly common problem, resulting in significant patient disability and health-care expenditure. Osteoarthritis (OA), a syndrome of joint pain with associated structural changes, is the most prevalent joint disease, yet the etiology of pain in OA is not entirely clear. Traditional assessment of the structure–pain relationship in knee OA has relied on conventional radiography, which has several limitations, not least the discrepancy between symptoms and radiographic findings. MRI has the capability to visualize all the structures within the knee joint, and there is a growing body of work using MRI to examine the correlation between structural findings and symptoms. In large cohort studies, synovial hypertrophy, synovial effusions, and abnormalities in the subchondral bone have been associated with knee pain. Advances in our understanding of the etiology of pain in OA will assist in the identification of further targets for treatment of this common and painful disease.

Key Points

  • Osteoarthritis (OA) is the most common joint disease and a major cause of joint pain, disability and health-care expenditure

  • Traditional imaging for diagnosing OA has relied upon radiography, but there are discrepancies between clinical symptoms and radiographic findings

  • As OA is now seen as a whole-organ joint disease, MRI is increasingly important in giving insight into the structures affected in OA, especially in symptomatic patients with normal radiographic findings

  • The cause of pain in OA is unclear, but MRI studies of the structure–pain relationship have suggested the importance of subchondral bone and the synovium; these are targets for ongoing research

  • The importance of extra-articular sources of joint pain and the psychosocial factors contributing to pain should not be ignored

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Medial tibial bone marrow lesion and macerated medial meniscus.
Figure 2: Medial articular cartilage loss and bone marrow lesions.
Figure 3: Large osteophytes and synovitis.
Figure 4: Synovitis in suprapatellar pouch and osteophytes.

Similar content being viewed by others

References

  1. Urwin M et al. (1998) Estimating the burden of musculoskeletal disorders in the community: the comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. Ann Rheum Dis 57: 649–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keenan AM et al. (2006) Impact of multiple joint problems on daily living tasks in people in the community over age fifty-five. Arthritis Rheum 55: 757–764

    Article  PubMed  Google Scholar 

  3. Amercian College of Rheumatology [http://www.rheumatology.org/] (accessed 15 January 2009)

  4. Felson DT and Zhang Y (1998) An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum 41: 1343–1355

    Article  CAS  PubMed  Google Scholar 

  5. Felson DT et al. (2000) Osteoarthritis: new Insights. Part 1: the disease and its risk factors. Ann Int Med 133: 635–646

    Article  CAS  PubMed  Google Scholar 

  6. Murphy L et al. (2008) Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum 59: 1207–1213

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim S (2008) Changes in surgical loads and economic burden of hip and knee replacements in the US: 1997–2004. Arthritis Rheum 59: 481–488

    Article  PubMed  Google Scholar 

  8. Ashraf S and Walsh DA (2008) Angiogenesis in osteoarthritis. Curr Opin Rheumatol 20: 573–580

    Article  PubMed  Google Scholar 

  9. Felson DT et al. (2001) The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 134: 541–549

    Article  CAS  PubMed  Google Scholar 

  10. Hill CL et al. (2001) Knee effusions, popliteal cysts, and synovial thickening: association with knee pain in osteoarthritis. J Rheumatol 28: 1330–1337

    CAS  PubMed  Google Scholar 

  11. Hill CL et al. (2007) Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis 66: 1599–1603

    Article  PubMed  PubMed Central  Google Scholar 

  12. Merskey H and Bogduk N (1994) Part III: Pain terms, a current list with definitions and notes on usage. In Classification of Chronic Pain, edn 2, 209–214. Seattle: IASP Press

    Google Scholar 

  13. Bellamy N et al. (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15: 1833–1840

    CAS  PubMed  Google Scholar 

  14. Bellamy N et al. (2002) Dimensionality and clinical importance of pain and disability in hand osteoarthritis: development of the Australian/Canadian (AUSCAN) Osteoarthritis Hand Index. Osteoarthritis Cartilage 10: 855–862

    Article  CAS  PubMed  Google Scholar 

  15. Jensen MP et al. (1986) The measurement of clinical pain intensity: a comparison of six methods. Pain 27: 117–126

    Article  CAS  PubMed  Google Scholar 

  16. Melzack R (1975) The McGill Pain Questionnaire: major properties and scoring methods. Pain 1: 277–299

    Article  CAS  PubMed  Google Scholar 

  17. Eckstein F and Glaser C (2004) Measuring cartilage morphology with quantitative magnetic resonance imaging. Semin Musculoskelet Radiol 8: 329–353

    Article  PubMed  Google Scholar 

  18. Hunter DJ et al. (2008) The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 67: 206–211

    Article  CAS  PubMed  Google Scholar 

  19. Peterfy CG et al. (2004) MR imaging of the arthritic knee: improved discrimination of cartilage, synovium, and effusion with pulsed saturation transfer and fat-suppressed T1-weighted sequences. Radiology 191: 413–419

    Article  Google Scholar 

  20. Kornaat PR et al. (2005) MRI assessment of knee ostoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 34: 95–102

    Article  PubMed  Google Scholar 

  21. Peterfy CG et al. (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12: 177–190

    Article  CAS  PubMed  Google Scholar 

  22. Hill CL et al. (2003) Periarticular lesions detected on magnetic resonance imaging: prevalence in knees with and without symptoms. Arthritis Rheum 48: 2836–2844

    Article  PubMed  Google Scholar 

  23. Wood LRJ et al. (2008) The contribution of selected non-articular conditions to knee pain severity and associated disability in older adults. Osteoarthritis Cartilage 16: 647–653

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence JS et al. (1966) Osteo-arthrosis: prevalence in the population and relationship between symptoms and X-ray changes. Ann Rheum Dis 25: 1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McAlindon TE et al. (1992) Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis 51: 844–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bedson J and Croft PR (2008) The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord 9: 116

    Article  PubMed  PubMed Central  Google Scholar 

  27. McAlindon TE et al. (1993) Determinants of disability in osteoarthritis of the knee. Ann Rheum Dis 52: 258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Duncan RC et al. (2006) Prevalence of radiographic osteoarthritis—it all depends on your point of view. Rheumatology (Oxford) 45: 757–760

    Article  CAS  Google Scholar 

  29. Davis MA et al. (1992) Correlates of knee pain among US adults with and without radiographic knee osteoarthritis. J Rheumatol 19: 1943–1949

    CAS  PubMed  Google Scholar 

  30. Hannan MT et al. (2000) Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 27: 1513–1517

    CAS  PubMed  Google Scholar 

  31. Felson DT et al. (1987) The prevalence of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum 30: 914–918

    Article  CAS  PubMed  Google Scholar 

  32. Salaffi F et al. (1991) Analysis of disability in knee osteoarthritis: relationship with age and psychological variables but not with radiographic score. J Rheumatol 18: 1581–1586

    CAS  PubMed  Google Scholar 

  33. Duncan R et al. (2007) Symptoms and radiographic osteoarthritis: not as discordant as they are made out to be? Ann Rheum Dis 66: 86–91

    Article  CAS  PubMed  Google Scholar 

  34. Lanyon P et al. (1998) Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space. Ann Rheum Dis 57: 595–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spector TD et al. (1993) Definition of osteoarthritis of the knee for epidemiological studies. Ann Rheum Dis 52: 790–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hunter DJ et al. (2006) The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 54: 795–801

    Article  CAS  PubMed  Google Scholar 

  37. Hayes C et al. (2005) Osteoarthritis of the knee: comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology 237: 998–1007

    Article  PubMed  Google Scholar 

  38. Sowers MF et al. (2003) Magnetic resonance-detected subchondral bone marrow and cartilage defect characteristics associated with pain and X-ray-defined knee osteoarthritis. Osteoarthritis Cartilage 11: 387–393

    Article  CAS  PubMed  Google Scholar 

  39. Hernandez-Molina G et al. (2008) The association of bone attrition with knee pain and other MRI features of osteoarthritis. Ann Rheum Dis 67: 43–47

    Article  CAS  PubMed  Google Scholar 

  40. Torres L et al. (2006) The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthritis Cartilage 14: 1033–1040

    Article  CAS  PubMed  Google Scholar 

  41. Link T et al. (2003) Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. Radiology 226: 373–381

    Article  PubMed  Google Scholar 

  42. Fernandez-Madrid F et al. (1994) MR features of osteoarthritis of the knee. Magn Reson Imaging 12: 703–709

    Article  CAS  PubMed  Google Scholar 

  43. Guymer E et al. (2007) A study of the prevalence and associations of subchondral bone marrow lesions in the knees of healthy, middle-aged women. Osteoarthritis Cartilage 15: 1437–1442

    Article  CAS  PubMed  Google Scholar 

  44. Bollet AJ (2001) Edema of the bone marrow can cause pain in osteoarthritis and other diseases of bone and joints. Ann Intern Med 134: 591–593

    Article  CAS  PubMed  Google Scholar 

  45. Kornaat PR et al. (2007) Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis: associations with clinical features. Eur Radiol 17: 3073–3078

    Article  PubMed  PubMed Central  Google Scholar 

  46. Conaghan PG et al. (2003) Elucidation of the relationship between synovitis and bone damage: a randomized magnetic resonance imaging study of individual joints in patients with early rheumatoid arthritis. Arthritis Rheum 48: 64–71

    Article  PubMed  Google Scholar 

  47. Zanetti M et al. (2000) Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 215: 835–840

    Article  CAS  PubMed  Google Scholar 

  48. Bergman AG et al. (1994) Osteoarthritis of the knee: correlation of subchondral MR signal abnormalities with histopathologic and radiographic features. Skeletal Radiol 23: 445–448

    Article  CAS  PubMed  Google Scholar 

  49. Saadat E et al. (2008) Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference. Eur Radiol 18: 2292–2302

    Article  PubMed  PubMed Central  Google Scholar 

  50. Taljanovic MS et al. (2008) Bone marrow edema pattern in advanced hip osteoarthritis: quantitative assessment with magnetic resonance imaging and correlation with clinical examination, radiographic findings, and histopathology. Skeletal Radiol 37: 423–431

    Article  PubMed  Google Scholar 

  51. Kornaat PR et al. (2006) Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology 239: 811–817

    Article  PubMed  Google Scholar 

  52. Felson DT et al. (2007) Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 56: 2986–2992

    Article  PubMed  Google Scholar 

  53. Davies-Tuck ML et al. (2008) The natural history of bone marrow lesions in community based adults with no clinical knee osteoarthritis. Ann Rheum Dis [10.1136/ard.2008.092973]

  54. Reichenbach S et al. (2008) Prevalence of bone attrition on knee radiographs and MRI in a community-based cohort. Osteoarthritis Cartilage 16: 1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McCauley TR et al. (2001) Central osteophytes in the knee: prevalence and association with cartilage defects on MR imaging. Am J Roentgenol 176: 359–364

    Article  CAS  Google Scholar 

  56. Kindynis P et al. (1990) Osteophytosis of the knee: anatomic, radiologic, and pathologic investigation. Radiology 174: 841–846

    Article  CAS  PubMed  Google Scholar 

  57. Beattie KA et al. (2005) Abnormalities identified in the knees of asymptomatic volunteers using peripheral magnetic resonance imaging. Osteoarthritis Cartilage 13: 181–186

    Article  CAS  PubMed  Google Scholar 

  58. Zhai G et al. (2006) Correlates of knee pain in older adults: Tasmanian Older Adult Cohort Study. Arthritis Rheum 55: 264–271

    Article  PubMed  Google Scholar 

  59. Zhai G et al. (2007) Correlates of knee pain in younger subjects. Clin Rheumatol 26: 75–80

    Article  PubMed  Google Scholar 

  60. Sengupta M et al. (2005) High signal in knee osteophytes is not associated with knee pain. Osteoarthritis Cartilage 14: 413–417

    Article  Google Scholar 

  61. Conaghan PG et al. (2006) MRI and non-cartilaginous structures in knee osteoarthritis. Osteoarthritis Cartilage 14: A87–A94

    Article  PubMed  Google Scholar 

  62. Østergaard M et al. (1997) Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis. Comparison with the macroscopic and microscopic appearance of the synovium. Arthritis Rheum 40: 1856–1867

    Article  PubMed  Google Scholar 

  63. Smith MD et al. (1997) Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol 24: 365–371

    CAS  PubMed  Google Scholar 

  64. Myers SL et al. (1990) Synovial inflammation in patients with early osteoarthritis of the knee. J Rheumatol 17: 1662–1669

    CAS  PubMed  Google Scholar 

  65. Loeuille D et al. (2005) Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum 52: 3492–3501

    Article  PubMed  Google Scholar 

  66. Fernandez-Madrid F et al. (1995) Synovial thickening detected by MR imaging in osteoarthritis of the knee confirmed by biopsy as synovitis. Magn Reson Imaging 13: 177–183

    Article  CAS  PubMed  Google Scholar 

  67. Pelletier J-P et al. (2008) A new non-invasive method to assess synovitis severity in relation to symptoms and cartilage volume loss in knee osteoarthritis patients using MRI. Osteoarthritis Cartilage 16: S8–S13

    Article  PubMed  Google Scholar 

  68. Hunter DJ (2008) Advanced imaging in osteoarthritis. Bull NYU Hosp Jt Dis 66: 251–260

    PubMed  Google Scholar 

  69. Ten Dam MA and Wetzels JF (2008) Toxicity of contrast media: an update. Neth J Med 66: 416–422

    CAS  PubMed  Google Scholar 

  70. Eckstein F et al. (2006) Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 19: 822–854

    Article  PubMed  Google Scholar 

  71. Davies-Tuck ML et al. (2008) The natural history of cartilage defects in people with knee osteoarthritis. Osteoarthritis Cartilage 16: 337–342

    Article  CAS  PubMed  Google Scholar 

  72. Stahl R et al. (2007) MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up. Osteoarthritis Cartilage 15: 1225–1234

    Article  CAS  PubMed  Google Scholar 

  73. Bolbos RI et al. (2008) Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage 16: 1150–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roos EM and Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage. a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52: 3507–3514

    Article  CAS  PubMed  Google Scholar 

  75. Kim Y-J et al. (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85: 1987–1992

    Article  PubMed  Google Scholar 

  76. Wluka AE et al. (2004) How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis? Ann Rheum Dis 64: 264–268

    Article  Google Scholar 

  77. Hunter DJ et al. (2003) The association of cartilage volume with knee pain. Osteoarthritis Cartilage 11: 725–729

    Article  CAS  PubMed  Google Scholar 

  78. Raynauld J-P et al. (2006) Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther 8: R21

    Article  PubMed  Google Scholar 

  79. Bonnet CS and Walsh DA (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44: 7–16

    Article  CAS  Google Scholar 

  80. Bhattacharyya T et al. (2003) The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J Bone Joint Surg Am 85: 156–157

    Article  Google Scholar 

  81. Englund M et al. (2007). Effect of meniscal damage on the development of frequent knee pain, aching, or stiffness. Arthritis Rheum 56: 4048–4054

    Article  CAS  PubMed  Google Scholar 

  82. Hill CL et al. (2005) Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum 52: 794–799

    Article  PubMed  Google Scholar 

  83. Amin S et al. (2008) Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthritis Cartilage 16: 897–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Dr Andrew Grainger, Consultant Musculoskeletal Radiologist, Leeds Teaching Hospitals Trust, for providing the images. Charles P Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G Conaghan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenham, C., Conaghan, P. Imaging the painful osteoarthritic knee joint: what have we learned?. Nat Rev Rheumatol 5, 149–158 (2009). https://doi.org/10.1038/ncprheum1023

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum1023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing