Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: adult mesenchymal stem cells for osteoarthritis therapy

Abstract

Despite the high prevalence and morbidity of osteoarthritis (OA), an effective treatment for this disease is currently lacking. Restoration of the diseased articular cartilage in patients with OA is, therefore, a challenge of considerable appeal to researchers and clinicians. Techniques that cause multipotent adult mesenchymal stem cells (MSCs) to differentiate into cells of the chondrogenic lineage have led to a variety of experimental strategies to investigate whether MSCs instead of chondrocytes can be used for the regeneration and maintenance of articular cartilage. MSC-based strategies should provide practical advantages for the patient with OA. These strategies include use of MSCs as progenitor cells to engineer cartilage implants that can be used to repair chondral and osteochondral lesions, or as trophic producers of bioactive factors to initiate endogenous regenerative activities in the OA joint. Targeted gene therapy might further enhance these activities of MSCs. Delivery of MSCs might be attained by direct intra-articular injection or by graft of engineered constructs derived from cell-seeded scaffolds; this latter approach could provide a three-dimensional construct with mechanical properties that are congruous with the weight-bearing function of the joint. Promising experimental and clinical data are beginning to emerge in support of the use of MSCs for regenerative applications.

Key Points

  • Osteoarthritis (OA), the most common joint disease, is characterized by degeneration of the articular cartilage that ultimately leads to joint destruction

  • Current treatment strategies for OA are inadequate

  • Delivery of an appropriate mesenchymal stem cell (MSC) population is currently being investigated in the search for new therapies for OA

  • MSCs could be used as trophic producers of bioactive factors to initiate endogenous regenerative activities in the OA joint; their activities might be further enhanced via targeted gene therapy

  • Delivery of MSCs might be achieved either by direct intra-articular injection or by implantation of engineered constructs derived from MSC-seeded scaffolds

  • In the long term, MSC-based technologies could permit the engineering and repair of cartilage as a treatment option for OA joints

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Delivery of MSCs to diseased cartilage in patients with osteoarthritis.
Figure 2: MSCs embedded in a collagen type I hydrogel can be used for tissue engineering of cartilage (U Nöth, unpublished data).
Figure 3: MSCs can be used as vehicles for ex vivo gene delivery.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Elders MJ (2000) The increasing impact of arthritis on public health. J Rheumatol Suppl 60: 6–8

    CAS  PubMed  Google Scholar 

  2. Brooks PM (2002) Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr Opin Rheumatol 14: 573–577

    Article  PubMed  Google Scholar 

  3. Hochberg MC et al. (1995) Guidelines for the medical management of osteoarthritis. Part II. Osteoarthritis of the knee. American College of Rheumatology. Arthritis Rheum 38: 1541–1546

    Article  CAS  PubMed  Google Scholar 

  4. Gerwin N et al. (2006) Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev 58: 226–242

    Article  CAS  PubMed  Google Scholar 

  5. Gunther KP (2001) Surgical approaches for osteoarthritis. Best Pract Res Clin Rheumatol 15: 627–643

    Article  CAS  PubMed  Google Scholar 

  6. Moseley JB et al. (2002) A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med 347: 81–88

    Article  PubMed  Google Scholar 

  7. Bartlett W et al. (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87: 640–645

    Article  CAS  PubMed  Google Scholar 

  8. Bentley G et al. (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85: 223–230

    Article  CAS  PubMed  Google Scholar 

  9. Hangody L and Fules P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 85A (Suppl 2): 25–32

    Article  Google Scholar 

  10. Henderson I et al. (2005) Autologous chondrocyte implantation for treatment of focal chondral defects of the knee—a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee 12: 209–216

    Article  PubMed  Google Scholar 

  11. Peterson L et al. (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am 85A (Suppl 2): 17–24

    Article  Google Scholar 

  12. Knutsen G et al. (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 86A: 455–464

    Article  Google Scholar 

  13. Steinert AF et al. (2007) Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res Ther 9: 213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bert JM and Gasser SI (2002) Approach to the osteoarthritic knee in the aging athlete: debridement to osteotomy. Arthroscopy 18: 107–110

    Article  PubMed  Google Scholar 

  15. Pittenger MF et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  CAS  PubMed  Google Scholar 

  16. Kolf CM et al. (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9: 204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen FH et al. (2006) Technology insight: adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol 2: 373–382

    Article  CAS  PubMed  Google Scholar 

  18. Aigner T et al. (2007) Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis—structure, chaos and senescence. Nat Clin Pract Rheumatol 3: 391–399

    Article  CAS  PubMed  Google Scholar 

  19. Buckwalter JA et al. (2006) Perspectives on chondrocyte mechanobiology and osteoarthritis. Biorheology 43: 603–609

    PubMed  Google Scholar 

  20. Martin JA et al. (2004) Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res 427 (Suppl): S96–S103

    Article  Google Scholar 

  21. Verbruggen G (2006) Chondroprotective drugs in degenerative joint diseases. Rheumatology (Oxford) 45: 129–138

    Article  CAS  Google Scholar 

  22. Deschner J et al. (2003) Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr. Metab Care 6: 289–293

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Im GI et al. (2006) Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng 12: 527–536

    Article  CAS  PubMed  Google Scholar 

  24. Barry FP (2003) Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today 69: 250–256

    Article  CAS  PubMed  Google Scholar 

  25. Murphy JM et al. (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46: 704–713

    Article  PubMed  Google Scholar 

  26. Muschler GF et al. (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19: 117–125

    Article  CAS  PubMed  Google Scholar 

  27. Quarto R et al. (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 56: 123–129

    Article  CAS  PubMed  Google Scholar 

  28. Leskela HV et al. (2003) Osteoblast recruitment from stem cells does not decrease by age at late adulthood. Biochem Biophys Res Commun 311: 1008–1013

    Article  CAS  PubMed  Google Scholar 

  29. De Bari C and Dell'Accio F (2007) Mesenchymal stem cells in rheumatology: a regenerative approach to joint repair. Clin Sci (Lond) 113: 339–348

    Article  CAS  Google Scholar 

  30. Kafienah W et al. (2007) Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum 56: 177–187

    Article  PubMed  Google Scholar 

  31. Scharstuhl A et al. (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25: 3244–3251

    Article  CAS  PubMed  Google Scholar 

  32. Murphy JM et al. (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48: 3464–3474

    Article  PubMed  Google Scholar 

  33. Lee KB et al. (2007) Injectable mesenchymal stem cell therapy for large cartilage defects––a porcine model. Stem Cells 25: 2964–2971

    Article  PubMed  Google Scholar 

  34. Chen X et al. (2006) Mesenchymal stem cells in immunoregulation. Immunol Cell Biol 84: 413–421

    Article  CAS  PubMed  Google Scholar 

  35. Uccelli A et al. (2007) Mesenchymal stem cells: a new strategy for immunosuppression. Trends Immunol 28: 219–226

    Article  CAS  PubMed  Google Scholar 

  36. Kan I et al. (2007) Autotransplantation of bone marrow-derived stem cells as a therapy for neurodegenerative diseases. Handb Exp Pharmacol 180: 219–242

    Article  CAS  Google Scholar 

  37. Caplan AI and Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98: 1076–1084

    Article  CAS  PubMed  Google Scholar 

  38. Raghunath J et al. (2007) Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol Appl Biochem 46: 73–84

    Article  CAS  PubMed  Google Scholar 

  39. Li WJ et al. (2005) Application of nanofibrous scaffolds in skeletal tissue engineering. J Biomed Nanotechnol 1: 1–17

    Article  CAS  Google Scholar 

  40. Mouw JK et al. (2005) Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthritis Cartilage 13: 828–836

    Article  CAS  PubMed  Google Scholar 

  41. Nöth U et al. (2002) In vitro engineered cartilage constructs produced by press-coating biodegradable polymer with human mesenchymal stem cells. Tissue Eng 8: 131–144

    Article  PubMed  Google Scholar 

  42. Li WJ et al. (2006) Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12: 1775–1785

    Article  CAS  PubMed  Google Scholar 

  43. Terada S et al. (2005) Hydrogel optimization for cultured elastic chondrocytes seeded onto a polyglycolic acid scaffold. J Biomed Mater Res A 75: 907–916

    Article  PubMed  CAS  Google Scholar 

  44. Kuo CK et al. (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18: 64–73

    Article  PubMed  Google Scholar 

  45. Nesic D et al. (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58: 300–322

    Article  CAS  PubMed  Google Scholar 

  46. Nöth U et al. (2007) Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res A 83: 626–635

    Article  PubMed  CAS  Google Scholar 

  47. Nöth U et al. (2006). Matrix-based autologous chondrocyte transplantation for the treatment of large osteochondral defects. In. European Musculoskeletal Review 2006, 62–64. London: Touch Briefings

    Google Scholar 

  48. Wakitani S et al. (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 13: 595–600

    Article  PubMed  Google Scholar 

  49. Kuroda R et al. (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 15: 226–231

    Article  CAS  PubMed  Google Scholar 

  50. Evans CH et al. (2006) Will arthritis gene therapy become a clinical reality? Nat Clin Pract Rheumatol 2: 344–345

    Article  PubMed  Google Scholar 

  51. Evans CH et al. (2004) Osteoarthritis gene therapy. Gene Ther 11: 379–389

    Article  CAS  PubMed  Google Scholar 

  52. Robbins PD et al. (2003) Gene therapy for arthritis. Gene Ther 10: 902–911

    Article  CAS  PubMed  Google Scholar 

  53. Gouze E et al. (2007) Transgene persistence and cell turnover in the diarthrodial joint: implications for gene therapy of chronic joint diseases. Mol Ther 15: 1114–1120

    Article  CAS  PubMed  Google Scholar 

  54. Evans CH et al. (1996) Clinical trial to assess the safety, feasibility, and efficacy of transferring a potentially anti-arthritic cytokine gene to human joints with rheumatoid arthritis. Hum Gene Ther 7: 1261–1280

    Article  CAS  PubMed  Google Scholar 

  55. Evans CH et al. (2005) Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc Natl Acad Sci USA 102: 8698–8703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frisbie DD et al. (2002) Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene. Gene Ther 9: 12–20

    Article  CAS  PubMed  Google Scholar 

  57. Haupt JL et al. (2005) Dual transduction of insulin-like growth factor-I and interleukin-1 receptor antagonist protein controls cartilage degradation in an osteoarthritic culture model. J Orthop Res 23: 118–126

    Article  CAS  PubMed  Google Scholar 

  58. Nixon AJ et al. (2005) Gene-mediated restoration of cartilage matrix by combination insulin-like growth factor-I/interleukin-1 receptor antagonist therapy. Gene Ther 12: 177–186

    Article  CAS  PubMed  Google Scholar 

  59. Trippel SB et al. (2004) Gene-based approaches for the repair of articular cartilage. Gene Ther 11: 351–359

    Article  CAS  PubMed  Google Scholar 

  60. Mi Z et al. (2003) Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees. Arthritis Res Ther 5: 132–139

    Article  CAS  Google Scholar 

  61. Gelse K et al. (2003) Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum 48: 430–441

    Article  CAS  PubMed  Google Scholar 

  62. Tuli R et al. (2003) Current state of cartilage tissue engineering. Arthritis Res Ther 5: 235–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hollander AP et al. (2006) Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng 12: 1787–1798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Deutsche Forschungsgemeinschaft (grant number DFG STE1051/2-1 to AF Steinert and U Nöth), Interdisziplinäres Zentrum für Klinische Forschung (grant number IZKF D-12/1 to U Nöth and D-23/1 to AF Steinert), and the Intramural Research Program of the National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health (grant number Z01 AR 41131 to RS Tuan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocky S Tuan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nöth, U., Steinert, A. & Tuan, R. Technology Insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Rev Rheumatol 4, 371–380 (2008). https://doi.org/10.1038/ncprheum0816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing