Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: temozolomide and glioblastoma—look to the future

Abstract

Glioblastoma is both the most common and most aggressive primary brain tumor. Until recently, the standard of care involved maximal safe surgical resection followed by radiation therapy with or without nitrosourea-based chemotherapy. In 2005, the results of a large clinical trial examining the role of adjuvant chemotherapy in management of newly diagnosed glioblastoma were published. This study created a new standard of adjuvant treatment, using concurrent and sequential temozolomide in the initial therapy of glioblastoma. A companion tumor biology study identified the prognostic role of O6-methylguanine-DNA methyltransferase (MGMT) status in patients with newly diagnosed glioblastoma. Several preliminary studies have been initiated to address the issue of resistance and suppression of MGMT activity, and have used alternative temozolomide dosing schedules and O6-guanine mimetic agents as substrates for MGMT. In addition, recent studies have attempted to define mechanisms responsible for the apparent synergy between temozolomide and radiotherapy. Lastly, an increased understanding of the molecular biology of glioblastoma has provided new leads for the adjuvant treatment of this disease. This Review summarizes new developments in treatment of glioblastoma and speculates on possible future treatment strategies for managing this aggressive cancer.

Key Points

  • Temozolomide (TMZ) as a single agent used concurrently and sequentially with radiation therapy is the new standard of care for patients with newly diagnosed glioblastoma who meet the EORTC/NCI trial pre-specified inclusion criteria

  • TMZ-induced resistance is predominantly mediated by two DNA repair mechanisms: MGMT and DNA mismatch repair, which increase exposure to TMZ, and direct inhibition of MGMT, which might circumvent both intrinsic and acquired resistance to TMZ

  • Synergy between TMZ and radiation therapy seems to involve an increased number of radiation-induced double-strand DNA breaks

  • Synergies between TMZ and targeted molecular therapeutics, in particular antiangiogenic and anti-integrin therapies, are being studied and promising preliminary results have been reported

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Central Brain Tumor Registry of the United States (CTBRUS) Report 2004. [http://www.cbtrus.org/factsheet/factsheet.html] (Accessed 18 April 2008)

  2. Stupp R et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996

    Article  CAS  Google Scholar 

  3. Stupp R et al. (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20: 1375–1382

    Article  CAS  Google Scholar 

  4. Mirimanoff RO et al. (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24: 2563–2569

    Article  CAS  Google Scholar 

  5. Esteller M et al. (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343: 1350–1354

    Article  CAS  Google Scholar 

  6. Hegi ME et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352: 997–1003

    Article  CAS  Google Scholar 

  7. Jaeckle KA et al. (1998) Correlation of tumor O6 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. J Clin Oncol 16: 3310–3315

    Article  CAS  Google Scholar 

  8. Silber JR et al. (1999) O6-methylguanine-DNA methyltransferase-deficient phenotype in human gliomas: frequency and time to tumor progression after alkylating agent-based chemotherapy. Clin Cancer Res 5: 807–814

    CAS  PubMed  Google Scholar 

  9. Paz MF et al. (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10: 4933–4938

    Article  CAS  Google Scholar 

  10. Hegi ME et al. (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10: 1871–1874

    Article  CAS  Google Scholar 

  11. Newlands ES et al. (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23: 35–61

    Article  CAS  Google Scholar 

  12. Newlands ES et al. (1992) Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer 65: 287–291

    Article  CAS  Google Scholar 

  13. Ostermann S et al. (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 10: 3728–3736

    Article  CAS  Google Scholar 

  14. Denny BJ et al. (1994) NMR and molecular modeling investigation of the mechanism of activation of the antitumor drug temozolomide and its interaction with DNA. Biochemistry 33: 9045–9051

    Article  CAS  Google Scholar 

  15. Tolcher AW et al. (2003) Marked inactivation of O6-alkylguanine-DNA alkyltransferase activity with protracted temozolomide schedules. Br J Cancer 88: 1004–1011

    Article  CAS  Google Scholar 

  16. Hickman MJ and LD Samson (1999) Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc Natl Acad Sci USA 96: 10764–10769

    Article  CAS  Google Scholar 

  17. Harris LC et al. (1996) Wild-type p53 suppresses transcription of the human O6-methylguanine-DNA methyltransferase gene. Cancer Res 56: 2029–2032

    CAS  PubMed  Google Scholar 

  18. Srivenugopal KS et al. (2001) Enforced expression of wild-type p53 curtails the transcription of the O(6)-methylguanine-DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents. Clin Cancer Res 7: 1398–1409

    CAS  PubMed  Google Scholar 

  19. Yung WK et al. (2000) A phase II study of temozolomide vs procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 83: 588–593

    Article  CAS  Google Scholar 

  20. Baruchel S et al. (2006) Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours. Eur J Cancer 42: 2335–2342

    Article  CAS  Google Scholar 

  21. Walker M et al. (1978) Evaluation of BCNU and or radiotherapy in the treatment of anaplastic gliomas. J Neurosurg 19: 333–343

    Article  Google Scholar 

  22. Wedge SR et al. (1997) In vitro evaluation of temozolomide combined with X-irradiation. Anticancer Drugs 8: 92–97

    Article  CAS  Google Scholar 

  23. Chakravarti A et al. (2006) Temozolomide-mediated radiation enhancement in glioblastoma: a report on underlying mechanisms. Clin Cancer Res 12: 4738–4746

    Article  CAS  Google Scholar 

  24. Hermisson M et al. (2006) O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. J Neurochem 96: 766–776

    Article  CAS  Google Scholar 

  25. Foster BA et al. (1999) Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507–2510

    Article  CAS  Google Scholar 

  26. Wild-Bode C et al. (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61: 2744–2750

    CAS  PubMed  Google Scholar 

  27. Hirose Y et al. (2001) p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res 61: 1957–1963

    CAS  PubMed  Google Scholar 

  28. van Rijn J et al. (2000) Survival in human glioma cells treated with various combination of temozolomide and X-rays. Int J Radiat Oncol Biol Phys 47: 779–784

    Article  CAS  Google Scholar 

  29. Sul J et al. (2007) A randomized phase II trial of concurrent temozolomide (TMZ) and radiotherapy (RT) followed by dose dense compared to metronomic TMZ and maintenence cis-retinois acid for patients with newly diagnosed glioblastoma multiforme (GBM) [abstract #2031]. J Clin Oncol 25 (Suppl 18S): 82s

    Google Scholar 

  30. Wick W et al. (2007) One week on/on week off regimen of temozolomide: phase II trial in recurrent glioma [abstract #2032]. J Clin Oncol 25 (Suppl 18S): 83s

    Google Scholar 

  31. D'Agostino GR et al. (2007) An analysis of two different schedules of radiochemotherapy with concomitant temozolomide in high grade gliomas [abstract #2035]. J Clin Oncol 25 (Suppl 18S): 83s

    Google Scholar 

  32. Gerber DE et al. (2007) The impact of thrombocytopenia from temozolomide and radiation in newly diagnosed adults with high-grade gliomas. Neuro Oncol 9: 47–52

    Article  CAS  Google Scholar 

  33. Brem S et al. (2007) Local delivery of temozolomide by biodegradable polymers is superior to oral administration in a rodent glioma model. Cancer Chemother Pharmacol 60: 643–650

    Article  CAS  Google Scholar 

  34. Zielske SP and Gerson SL (2002) Lentiviral transduction of P140K MGMT into human CD34(+) hematopoietic progenitors at low multiplicity of infection confers significant resistance to BG/BCNU and allows selection in vitro. Mol Ther 5: 381–387

    Article  CAS  Google Scholar 

  35. Smith DC et al. (1996) Carmustine and streptozocin in refractory melanoma: an attempt at modulation of O-alkylguanine-DNA-alkyltransferase. Clin Cancer Res 2: 1129–1134

    CAS  PubMed  Google Scholar 

  36. Dolan ME et al. (1998) O6-benzylguanine in humans: metabolic, pharmacokinetic, and pharmacodynamic findings. J Clin Oncol 16: 1803–1810

    Article  CAS  Google Scholar 

  37. Rabik CA et al. (2006) Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev 32: 261–276

    Article  CAS  Google Scholar 

  38. Friedman HS (2000) Can O6-alkylguanine-DNA alkyltransferase depletion enhance alkylator activity in the clinic? Clin Cancer Res 6: 2967–2968

    CAS  PubMed  Google Scholar 

  39. Quinn JA et al. (2007) Phase II trial of Gliadel plus O-6-benzylguanine (O-6-BG) for patients with recurrent glioblastoma multiforme [abstract #2036]. J Clin Oncol 25 (Suppl 18S): 84s

    Google Scholar 

  40. Schilsky RL et al. (2000) Phase I clinical and pharmacological study of O6-benzylguanine followed by carmustine in patients with advanced cancer. Clin Cancer Res 6: 3025–3031

    CAS  PubMed  Google Scholar 

  41. Quinn JA et al. (2005) Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol 23: 7178–7187

    Article  CAS  Google Scholar 

  42. Friedman HS et al. (2000) Phase I trial of carmustine plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol 18: 3522–3528

    Article  CAS  Google Scholar 

  43. Quinn JA et al. (2007) Phase II trial of Gliadel plus O-6-benzylguanine (O-6-BG) for patients with recurrent glioblastoma multiforme [abstract #2036]. J Clin Oncol 25 (Suppl 18S): 84s

    Google Scholar 

  44. Ranson M et al. (2006) Lomeguatrib, a potent inhibitor of O6-alkylguanine-DNA-alkyltransferase: phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 12: 1577–1584

    Article  CAS  Google Scholar 

  45. Trivedi RN et al. (2005) The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res 65: 6394–6400

    Article  CAS  Google Scholar 

  46. Liu L and SL Gerson (2006) Targeted modulation of MGMT: clinical implications. Clin Cancer Res 12: 328–331

    Article  CAS  Google Scholar 

  47. Masson M et al. (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18: 3563–3571

    Article  CAS  Google Scholar 

  48. Calabrese CR et al. (2003) Identification of potent nontoxic poly(ADP-Ribose) polymerase-1 inhibitors: chemopotentiation and pharmacological studies. Clin Cancer Res 9: 2711–2718

    CAS  PubMed  Google Scholar 

  49. Ratnam K and Low JA (2007) Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 13: 1383–1388

    Article  CAS  Google Scholar 

  50. Plummer ER et al. (2005) Temozolomide pharmacodynamics in patients with metastatic melanoma: DNA damage and activity of repair enzymes O6-alkylguanine alkyltransferase and poly(ADP-ribose) polymerase-1. Clin Cancer Res 11: 3402–3409

    Article  CAS  Google Scholar 

  51. Pelloski CE et al. (2007) Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol 25: 2288–2294

    Article  CAS  Google Scholar 

  52. Layfield LJ et al. (2006) Epidermal growth factor receptor gene amplification and protein expression in glioblastoma multiforme: prognostic significance and relationship to other prognostic factors. Appl Immunohistochem Mol Morphol 14: 91–96

    Article  CAS  Google Scholar 

  53. Mellinghoff IK et al. (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353: 2012–2024

    Article  CAS  Google Scholar 

  54. Heimberger AB et al. (2003) Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res 9: 4247–4254

    CAS  PubMed  Google Scholar 

  55. Archer G et al. (2005) Immunologic targeting of the tumor specific antigen contained in the deletion mutation of the epidermal growth factor receptor (EGFRvIII) with peptide loaded dendritic cells in patients with malignant glioma [abstract #265]. Neuro Oncol 5 (Suppl): 350

    Google Scholar 

  56. Goudar RK et al. (2005) Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 4: 101–112

    CAS  PubMed  Google Scholar 

  57. Reardon DA et al. (2006) Phase 1 trial of gefitinib plus sirolimus in adults with recurrent malignant glioma. Clin Cancer Res 12: 860–868

    Article  CAS  Google Scholar 

  58. Oehring RD et al. (1999) Vascular endothelial growth factor (VEGF) in astrocytic gliomas—a prognostic factor? J Neurooncol 45: 117–125

    Article  CAS  Google Scholar 

  59. Yao Y et al. (2001) Prognostic value of vascular endothelial growth factor and its receptors Flt-1 and Flk-1 in astrocytic tumours. Acta Neurochir (Wien) 143: 159–166

    Article  CAS  Google Scholar 

  60. Pope WB et al. (2006) MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66: 1258–1260

    Article  CAS  Google Scholar 

  61. Vredenburgh JJ et al. (2007) Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 13: 1253–1259

    Article  CAS  Google Scholar 

  62. Vredenburgh J et al. (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25: 4722–4729

    Article  CAS  Google Scholar 

  63. Batchelor TT et al. (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11: 83–95

    Article  CAS  Google Scholar 

  64. Conrad C et al. (2004) A phase I/II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM) [abstract #1512]. J Clin Oncol 22 (Suppl)

    Article  Google Scholar 

  65. Reardon D et al. (2004) A phase I/II trial of PTK787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in combination with either temozolomide or lomustine for patients with recurrent glioblastoma multiforme (GBM) [abstract #1513]. J Clin Oncol 22 (Suppl)

    Article  Google Scholar 

  66. Brandes AA et al. (2007) EORTC Study 26041-22041: Phase I/II study on concomitant and adjuvant temozolomide and radiotherapy with or without PTK787/ZK222584 in newly diagnosed glioblastom—results of phase I trial [abstract # 2026]. J Clin Oncol 25 (Suppl 18S): 81s

    Google Scholar 

  67. Holden SN et al. (2005) Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol 16: 1391–1397

    Article  CAS  Google Scholar 

  68. Heymach JV et al. (2006) Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer. Clin Cancer Res 12: 4441s–4445s

    Article  CAS  Google Scholar 

  69. Heymach JV (2005) ZD6474—clinical experience to date. Br J Cancer 92 (Suppl 1): S14–S20

    Article  CAS  Google Scholar 

  70. Rich JN et al. (2005) ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin Cancer Res 11: 8145–8157

    Article  CAS  Google Scholar 

  71. Sandstrom M et al. (2004) The tyrosine kinase inhibitor ZD6474 inhibits tumour growth in an intracerebral rat glioma model. Br J Cancer 91: 1174–1180

    Article  CAS  Google Scholar 

  72. Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48: 549–554

    Article  CAS  Google Scholar 

  73. Bello L et al. (2001) Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 49: 380–389

    CAS  PubMed  Google Scholar 

  74. Nabors LB et al. (2007) Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 25: 1651–1657

    Article  CAS  Google Scholar 

  75. Reardon DA et al. (2007) Phase IIA trial of cilengitide (EMD121974) single-agent therapy in patients with recurrent glioblastoma (GBM): EMD 121974-009 [abstract #2002]. J Clin Oncol 25 (Suppl 18S): 75s

    Google Scholar 

  76. Stupp R et al. (2007) Phase I/IIa trial of cilengitide (EMD121974) and temozolomide with concomitant radiotherapy, followed by temozolomide and cilengitide maintenece therapy in patients with newly diagnosed glioblastoma (GBM) [abstract #2000]. J Clin Oncol 25 (Suppl 18S): 75s

    Google Scholar 

  77. Tabatabai G et al. (2007) Synergistic antiglioma activity of radiotherapy and enzastaurin. Ann Neurol 61: 153–161

    Article  CAS  Google Scholar 

  78. Quinn JA et al. (2002) Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol 20: 2277–2283

    Article  CAS  Google Scholar 

  79. Gasparini G et al. (2005) Combination of antiangiogenic therapy with other anticancer therapies: results, challenges, and open questions. J Clin Oncol 23: 1295–1311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C Chamberlain.

Ethics declarations

Competing interests

Marc C Chamberlain is a Consultant for Schering–Plough and he also received honoraria and grant and research support from Schering–Plough. Maciej M Mrugala is a Consultant for Schering–Plough.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrugala, M., Chamberlain, M. Mechanisms of Disease: temozolomide and glioblastoma—look to the future. Nat Rev Clin Oncol 5, 476–486 (2008). https://doi.org/10.1038/ncponc1155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing