Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primer: strategies for identifying genes involved in renal disease

Abstract

The globally increasing number of patients with end-stage renal disease urges the identification of molecular pathways involved in renal pathophysiology, to serve as targets for intervention. Moreover, the identification of genetic risk factors or protective genes can aid tailored therapy. Tools that can be used to identify genes involved in renal disease include gene expression arrays, linkage analysis and association studies. Arrays are a powerful and widely used approach to the analysis of gene transcription and protein expression, whereas linkage analysis and association studies link disease susceptibility to particular genetic regions. Animal models are available to pinpoint the disease-associated genes. Candidate genes so far identified in renal disease include those encoding the podocyte proteins nephrin and podocin, the transcription factor WT1, the calcium channel TRPC6 and the enzyme phospholipase C-epsilon-1 (in congenital nephrotic syndrome and focal segmental glomerulosclerosis), and carnosinase (in diabetic nephropathy). In addition, linkage studies have identified chromosomal regions implicated in systemic lupus erythematosus, diabetic nephropathy and familial IgA nephropathy. Future studies will elucidate the emerging role of epigenetic regulation of gene expression in renal disease.

Key Points

  • Tools for identifying genes involved in renal disease include gene expression arrays, linkage analysis and association studies

  • Gene expression arrays are powerful and widely used tools; when confounding influences are minimized by use of a robust study design, these arrays have reasonable reproducibility

  • Linkage analysis and association studies have implicated several regions of the genome in the pathogenesis of complex renal disorders

  • The genetic defects responsible for some hereditary renal diseases, such as familial focal segmental glomerulosclerosis and nephrotic syndrome, have been identified

  • Identification of candidate renal disease genes can generate prognostic markers to guide tailored therapy and provide novel targets for intervention

  • Altered gene methylation has been observed in renal disease; further studies are required to elucidate the role of this and other forms of epigenetic modification in this setting

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Number of papers reporting use of gene expression arrays published per year since 1995, underlining the rapidly growing popularity of this technology.
Figure 2: Hypothetical design of integrated multiple-level cellular profiling for the identification of candidate renal disease pathways.
Figure 3: Overview of renal-damage-related quantitative trait loci in the rat, by chromosome.
Figure 4: Overview of components associated with the glomerular slit diaphragm and the podocyte cytoskeleton in which mutations have been identified in human congenital nephrotic syndrome and/or focal segmental glomerulosclerosis.

Similar content being viewed by others

References

  1. United States Renal Data System (online 2007) Annual Report 2007: Chapter 2: ESRD incidence & prevalence [http://www.usrds.org/2007/pdf/02_incid_prev_07.pdf] (accessed 30 January 2008)

  2. Mitka M (2005) Kidney failure rates end 20-year climb. JAMA 294: 2563

    Article  CAS  PubMed  Google Scholar 

  3. Meguid El Nahas A et al. (2005) Chronic kidney disease: the global challenge. Lancet 365: 331–340

    Article  CAS  PubMed  Google Scholar 

  4. Lysaght MJ (2002) Maintenance dialysis population dynamics: current trends and long-term implications. J Am Soc Nephrol 13 (Suppl 1): S37–S40

    PubMed  Google Scholar 

  5. United States Renal Data System (online 2007) Annual Report 2007: Chapter 11: Costs of CKD & ESRD [http://www.usrds.org/2007/pdf/11_econ_07.pdf] (accessed 30 January 2008)

  6. Remuzzi G et al. (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116: 288–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ronco P et al. (2005) Molecular pathomechanisms of membranous nephropathy: from Heymann nephritis to alloimmunization. J Am Soc Nephrol 16: 1205–1213

    Article  CAS  PubMed  Google Scholar 

  8. Reichert LJ et al. (1998) Prognostic factors in idiopathic membranous nephropathy. Am J Kidney Dis 31: 1–11

    Article  CAS  PubMed  Google Scholar 

  9. Dumoulin A et al. (2003) Clinical and morphological prognostic factors in membranous nephropathy: significance of focal segmental glomerulosclerosis. Am J Kidney Dis 41: 38–48

    Article  PubMed  Google Scholar 

  10. Fujisawa T et al. (1998) Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic nephropathy and retinopathy. Diabetologia 41: 47–53

    Article  CAS  PubMed  Google Scholar 

  11. Staessen JA et al. (1997) The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens 15: 1579–1592

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida H et al. (1995) Role of the deletion of polymorphism of the angiotensin converting enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy. J Clin Invest 96: 2162–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parving HH et al. (2008) ACE gene polymorphism and losartan treatment in type 2 diabetic patients with nephropathy. J Am Soc Nephrol [10.1681/ASN.2007050582]

  14. Ruggenenti P et al. (2000) Chronic proteinuric nephropathies. II: outcomes and response to treatment in a prospective cohort of 352 patients: differences between women and men in relation to the ACE gene polymorphism. Gruppo Italiano di Studi Epidemologici in Nefrologia (Gisen). J Am Soc Nephrol 11: 88–96

    CAS  PubMed  Google Scholar 

  15. Eszlinger M et al. (2007) Perspectives and limitations of microarray-based gene expression profiling of thyroid tumors. Endocr Rev 28: 322–338

    Article  CAS  PubMed  Google Scholar 

  16. Schena M et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470

    Article  CAS  PubMed  Google Scholar 

  17. Takemoto M et al. (2006) Large-scale identification of genes implicated in kidney glomerulus development and function. EMBO J 25: 1160–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sampson NS et al. (2001) Global gene expression analysis reveals a role for the alpha 1 integrin in renal pathogenesis. J Biol Chem 276: 34182–34188

    Article  CAS  PubMed  Google Scholar 

  19. Benjamini Y et al. (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. JR Stat Soc Ser B 57: 289–300

    Google Scholar 

  20. Storey JD et al. (2005) Significance analysis of time course microarray experiments. Proc Natl Acad Sci USA 102: 12837–12842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tan PK et al. (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31: 5676–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cobb JP et al. (2005) Application of genome-wide expression analysis to human health and disease. Proc Natl Acad Sci USA 102: 4801–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Canales RD et al. (2006) Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24: 1115–1122

    Article  CAS  PubMed  Google Scholar 

  24. Shi L et al. (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24: 1151–1161

    Article  CAS  PubMed  Google Scholar 

  25. Barnes M et al. (2005) Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res 33: 5914–5923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuo WP et al. (2006) A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nat Biotechnol 24: 832–840

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y et al. (2006) Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays. BMC Genomics 7: 59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Higgins JP et al. (2004) Gene expression in the normal adult human kidney assessed by complementary DNA microarray. Mol Biol Cell 15: 649–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chabardes-Garonne D et al. (2003) A panoramic view of gene expression in the human kidney. Proc Natl Acad Sci USA 100: 13710–13715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu P et al. (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25: 117–124

    Article  CAS  PubMed  Google Scholar 

  31. De Borst MH et al. (2007) Profiling of the renal kinome: a novel tool to identify protein kinases involved in angiotensin II-dependent hypertensive renal damage. Am J Physiol Renal Physiol 293: F428–F437

    Article  CAS  PubMed  Google Scholar 

  32. Warren L et al. (2006) Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci USA 103: 17807–17812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eckhardt F et al. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38: 1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang X et al. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126: 1189–1201

    Article  CAS  PubMed  Google Scholar 

  35. Lafaye A et al. (2005) Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism. J Biol Chem 280: 24723–24730

    Article  CAS  PubMed  Google Scholar 

  36. Baginsky S et al. (2005) Analysis of shotgun proteomics and RNA profiling data from Arabidopsis thaliana chloroplasts. J Proteome Res 4: 637–640

    Article  CAS  PubMed  Google Scholar 

  37. Hall N et al. (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307: 82–86

    Article  CAS  PubMed  Google Scholar 

  38. Mijalski T et al. (2005) Identification of coexpressed gene clusters in a comparative analysis of transcriptome and proteome in mouse tissues. Proc Natl Acad Sci USA 102: 8621–8626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Q et al. (2005) Identification of 14-3-3sigma mutation causing cutaneous abnormality in repeated-epilation mutant mouse. Proc Natl Acad Sci USA 102: 15977–15982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gibbons RJ et al. (2003) Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the alpha-thalassemia myelodysplasia syndrome (ATMDS). Nat Genet 34: 446–449

    Article  CAS  PubMed  Google Scholar 

  41. Hacia JG et al. (1996) Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis. Nat Genet 14: 441–447

    Article  CAS  PubMed  Google Scholar 

  42. Botstein D et al. (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33 (Suppl): S228–S237

    Article  CAS  Google Scholar 

  43. Lander ES et al. (1994) Genetic dissection of complex traits. Science 265: 2037–2048

    Article  CAS  PubMed  Google Scholar 

  44. Duerr RH et al. (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314: 1461–1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Helgadottir A et al. (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316: 1491–1493

    Article  CAS  PubMed  Google Scholar 

  46. Haiman CA et al. (2007) Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 39: 638–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gudmundsson J et al. (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39: 631–637

    Article  CAS  PubMed  Google Scholar 

  48. Sladek R et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885

    Article  CAS  PubMed  Google Scholar 

  49. Scott LJ et al. (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Risch N and Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273: 1516–1517

    Article  CAS  PubMed  Google Scholar 

  51. Lander E et al. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11: 241–247

    Article  CAS  PubMed  Google Scholar 

  52. Grant SF et al. (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38: 320–323

    Article  CAS  PubMed  Google Scholar 

  53. Van Eerdewegh P et al. (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418: 426–430

    Article  CAS  PubMed  Google Scholar 

  54. Gibbs RA et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521

    Article  CAS  PubMed  Google Scholar 

  55. Medical College of Wisconsin (online 2007) Rat Genome Database [http://rgd.mcw.edu/wg/] (accessed 8 June 2007)

  56. Glazier AM et al. (2002) Finding genes that underlie complex traits. Science 298: 2345–2349

    Article  CAS  PubMed  Google Scholar 

  57. Flint J et al. (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6: 271–286

    Article  CAS  PubMed  Google Scholar 

  58. Deng HW et al. (2000) QTL fine mapping by measuring and testing for Hardy-Weinberg and linkage disequilibrium at a series of linked marker loci in extreme samples of populations. Am J Hum Genet 66: 1027–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pravenec M et al. (1989) An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertens 7: 217–221

    Article  CAS  PubMed  Google Scholar 

  60. Hübner N et al. (1999) Congenic substitution mapping excludes Sa as a candidate gene locus for a blood pressure quantitative trait locus on rat chromosome 1. Hypertension 34: 643–648

    Article  PubMed  Google Scholar 

  61. Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18: 19–24

    Article  CAS  PubMed  Google Scholar 

  62. Singer JB et al. (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304: 445–448

    Article  CAS  PubMed  Google Scholar 

  63. Garrett MR et al. (2007) Dissection of a genetic locus influencing renal function in the rat and its concordance with kidney disease loci on human chromosome 1q21. Physiol Genomics 30: 322–334

    Article  CAS  PubMed  Google Scholar 

  64. Cowley AW Jr (2006) The genetic dissection of essential hypertension. Nat Rev Genet 7: 829–840

    Article  CAS  PubMed  Google Scholar 

  65. Forabosco P et al. (2006) Meta-analysis of genome-wide linkage studies of systemic lupus erythematosus. Genes Immun 7: 609–614

    Article  CAS  PubMed  Google Scholar 

  66. Vardarli I et al. (2002) Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3-23. Kidney Int 62: 2176–2183

    Article  CAS  PubMed  Google Scholar 

  67. Iyengar SK et al. (2003) Linkage analysis of candidate loci for end-stage renal disease due to diabetic nephropathy. J Am Soc Nephrol 14 (Suppl 2): S195–S201

    Article  CAS  PubMed  Google Scholar 

  68. Krolewski AS et al. (2006) A genome-wide linkage scan for genes controlling variation in urinary albumin excretion in type II diabetes. Kidney Int 69: 129–136

    Article  CAS  PubMed  Google Scholar 

  69. Iyengar SK et al. (2007) Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes 56: 1577–1585

    Article  CAS  PubMed  Google Scholar 

  70. Paterson AD et al. (2007) Genome-wide linkage scan of a large family with IgA nephropathy localizes a novel susceptibility locus to chromosome 2q36. J Am Soc Nephrol 18: 2408–2415

    Article  CAS  PubMed  Google Scholar 

  71. Bisceglia L et al. (2006) Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci. Am J Hum Genet 79: 1130–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gharavi AG et al. (2000) IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat Genet 26: 354–357

    Article  CAS  PubMed  Google Scholar 

  73. Remuzzi G and Bertani T (1998) Pathophysiology of progressive nephropathies. N Engl J Med 339: 1448–1456

    Article  CAS  PubMed  Google Scholar 

  74. Kestila M et al. (1998) Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1: 575–582

    Article  CAS  PubMed  Google Scholar 

  75. Boute N et al. (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 24: 349–354

    Article  CAS  PubMed  Google Scholar 

  76. Kim JM et al. (2003) CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science 300: 1298–1300

    Article  CAS  PubMed  Google Scholar 

  77. Kaplan JM et al. (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet 24: 251–256

    Article  CAS  PubMed  Google Scholar 

  78. Zenker M et al. (2004) Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet 13: 2625–2632

    Article  CAS  PubMed  Google Scholar 

  79. Reiser J et al. (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37: 739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Winn MP et al. (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308: 1801–1804

    Article  CAS  PubMed  Google Scholar 

  81. Hinkes B et al. (2006) Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet 38: 1397–1405

    Article  CAS  PubMed  Google Scholar 

  82. Mucha B et al. (2006) Mutations in the Wilms' tumor 1 gene cause isolated steroid resistant nephrotic syndrome and occur in exons 8 and 9. Pediatr Res 59: 325–331

    Article  CAS  PubMed  Google Scholar 

  83. Janssen B et al. (2005) Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1. Diabetes 54: 2320–2327

    Article  CAS  PubMed  Google Scholar 

  84. Sauerhofer S et al. (2007) L-carnosine, a substrate of carnosinase-1, influences glucose metabolism. Diabetes 56: 2425–2432

    Article  CAS  PubMed  Google Scholar 

  85. Moller CC et al. (2007) Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol 18: 29–36

    Article  CAS  PubMed  Google Scholar 

  86. Luimula P et al. (2002) Podocyte-associated molecules in puromycin aminonucleoside nephrosis of the rat. Lab Invest 82: 713–718

    Article  CAS  PubMed  Google Scholar 

  87. Koop K et al. (2003) Expression of podocyte-associated molecules in acquired human kidney diseases. J Am Soc Nephrol 14: 2063–2071

    Article  CAS  PubMed  Google Scholar 

  88. Macconi D et al. (2006) Permselective dysfunction of podocyte-podocyte contact upon angiotensin II unravels the molecular target for renoprotective intervention. Am J Pathol 168: 1073–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lamb J et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929–1935

    Article  CAS  PubMed  Google Scholar 

  90. Churchill GA et al. (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36: 1133–1137

    Article  CAS  PubMed  Google Scholar 

  91. Ruf RG et al. (2004) Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J Am Soc Nephrol 15: 722–732

    Article  PubMed  Google Scholar 

  92. Sellier-Leclerc AL et al. (2007) Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J Am Soc Nephrol 18: 2392–2400

    Article  CAS  PubMed  Google Scholar 

  93. Caprioli J et al. (2006) Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108: 1267–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Levy S et al. (2007) The Diploid Genome Sequence of an Individual Human. PLoS Biol 5: e254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zilberman D et al. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39: 61–69

    Article  CAS  PubMed  Google Scholar 

  96. Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128: 787–800

    Article  CAS  PubMed  Google Scholar 

  97. Remuzzi A et al. (1992) Pathophysiologic implications of proteinuria in a rat model of progressive glomerular injury. Lab Invest 67: 572–579

    CAS  PubMed  Google Scholar 

  98. Neugarten J et al. (2000) Effect of gender on the progression of nondiabetic renal disease: a meta-analysis. J Am Soc Nephrol 11: 319–329

    CAS  PubMed  Google Scholar 

  99. Skuse DH et al. (1997) Evidence from Turner's syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387: 705–708

    Article  CAS  PubMed  Google Scholar 

  100. Carrel L and Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434: 400–404

    Article  CAS  PubMed  Google Scholar 

  101. Crackower MA et al. (2002) Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417: 822–828

    Article  CAS  PubMed  Google Scholar 

  102. Oudit GY et al. (2006) Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol 168: 1808–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xie X et al. (2006) Age- and gender-related difference of ACE2 expression in rat lung. Life Sci 78: 2166–2171

    Article  CAS  PubMed  Google Scholar 

  104. Stenvinkel P et al. (2007) Impact of inflammation on epigenetic DNA methylation—a novel risk factor for cardiovascular disease. J Intern Med 261: 488–499

    Article  CAS  PubMed  Google Scholar 

  105. Takai D et al. (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99: 3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wisman GB et al. (2006) Assessment of gene promoter hypermethylation for detection of cervical neoplasia. Int J Cancer 119: 1908–1914

    Article  CAS  PubMed  Google Scholar 

  107. Ghisletti S et al. (2007) Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol Cell 25: 57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Le Cam L et al. (2006) E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127: 775–788

    Article  CAS  PubMed  Google Scholar 

  109. Hecht A et al. (1999) Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol 304: 399–414

    Article  CAS  PubMed  Google Scholar 

  110. Sparago A et al. (2004) Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat Genet 36: 958–960

    Article  CAS  PubMed  Google Scholar 

  111. Jones PA et al. (2007) The epigenomics of cancer. Cell 128: 683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jones PA et al. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428

    Article  CAS  PubMed  Google Scholar 

  113. Laukkanen MO et al. (1999) Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol 19: 2171–2178

    Article  CAS  PubMed  Google Scholar 

  114. Post WS et al. (1999) Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 43: 985–991

    Article  CAS  PubMed  Google Scholar 

  115. Ying AK et al. (2000) Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res 46: 172–179

    Article  CAS  PubMed  Google Scholar 

  116. Yoshikawa M et al. (2007) Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J Am Soc Nephrol 18: 58–65

    Article  CAS  PubMed  Google Scholar 

  117. Shen B et al. (2007) The Bradykinin B2 receptor gene is a target of angiotensin II type 1 receptor signaling. J Am Soc Nephrol 18: 1140–1149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Jessica Caprioli and Dr Marina Noris for critically reading the manuscript. This work, as part of the European Renal Genome (EuReGene) project, was supported by the European Union Sixth Framework Programme (FP6), grant number LSHG-CT-2004-005085. Charles P Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin H de Borst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Overview of renal damage-related QTLs and their chromosomal location, as reported in the literature. (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Borst, M., Benigni, A. & Remuzzi, G. Primer: strategies for identifying genes involved in renal disease. Nat Rev Nephrol 4, 265–276 (2008). https://doi.org/10.1038/ncpneph0785

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0785

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing