Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams

Abstract

Peptidoglycan is an essential crosslinked polymer that surrounds bacteria and protects them from osmotic lysis. β-lactam antibiotics target the final stages of peptidoglycan biosynthesis by inhibiting the transpeptidases that crosslink glycan strands to complete cell wall assembly. Characterization of transpeptidases and their inhibition by β-lactams have been hampered by lack of access to a suitable substrate. We describe a general approach to accumulate Lipid II in bacteria and to obtain large quantities of this cell wall precursor. We demonstrate the utility of this strategy by isolating Staphylococcus aureus Lipid II and reconstituting the synthesis of crosslinked peptidoglycan by the essential penicillin-binding protein 2 (PBP2), which catalyzes both glycan polymerization and transpeptidation. We also show that we can compare the potencies of different β-lactams by directly monitoring transpeptidase inhibition. The methods reported here will enable a better understanding of cell wall biosynthesis and facilitate studies of next-generation transpeptidase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthetic pathway for peptidoglycan assembly in Staphylococcus aureus.
Figure 2: Lipid II can be accumulated in bacteria using chemical probes that block Lipid II export or polymerization.
Figure 3: Large quantities of native S. aureus Lipid II can be isolated with good purity by extraction.
Figure 4: The synthesis of crosslinked peptidoglycan was reconstituted using native S. aureus Lipid II.
Figure 5: Direct transpeptidase activity assay enables comparison of β-lactam inhibition of S. aureus PBP2.

Similar content being viewed by others

References

  1. Walsh, C.T. & Wencewicz, T. Antibiotics: Challenges, Mechanisms, Opportunities (ASM press, 2016).

  2. Centers for Disease Control and Prevention Office of Infectious Disease. Antibiotic resistance threat in the United States, 2013 (US Department of Health and Human Services, 2013).

  3. Chung, B.C. et al. Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science 341, 1012–1016 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Men, H., Park, P., Ge, M. & Walker, S. Substrate synthesis and activity assay for MurG. J. Am. Chem. Soc. 120, 2484–2485 (1998).

    CAS  Google Scholar 

  5. Ha, S. et al. The kinetic characterization of Escherichia coli MurG using synthetic substrate analogues. J. Am. Chem. Soc. 121, 8415–8426 (1999).

    CAS  Google Scholar 

  6. Siewert, G. & Strominger, J.L. Biosynthesis of the peptidoglycan of bacterial cell walls. XI. Formation of the isoglutamine amide group in the cell walls of Staphylococcus aureus. J. Biol. Chem. 243, 783–790 (1968).

    CAS  PubMed  Google Scholar 

  7. Münch, D. et al. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog. 8, e1002509 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. Matsuhashi, M., Dietrich, C.P. & Strominger, J.L. Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc. Natl. Acad. Sci. USA 54, 587–594 (1965).

    CAS  PubMed  Google Scholar 

  9. Bumsted, R.M., Dahl, J.L., Söll, D. & Strominger, J.L. Biosynthesis of the peptidoglycan of bacterial cell walls. X. Further study of the glycyl transfer ribonucleic acids active in peptidoglycan synthesis in Staphylococcus aureus. J. Biol. Chem. 243, 779–782 (1968).

    CAS  PubMed  Google Scholar 

  10. Schneider, T. et al. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol. Microbiol. 53, 675–685 (2004).

    CAS  PubMed  Google Scholar 

  11. Ruiz, N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl. Acad. Sci. USA 105, 15553–15557 (2008).

    CAS  PubMed  Google Scholar 

  12. Sham, L.T. et al. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ye, X.Y. et al. Better substrates for bacterial transglycosylases. J. Am. Chem. Soc. 123, 3155–3156 (2001).

    CAS  PubMed  Google Scholar 

  14. Lebar, M.D. et al. Forming cross-linked peptidoglycan from synthetic gram-negative Lipid II. J. Am. Chem. Soc. 135, 4632–4635 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Born, P., Breukink, E. & Vollmer, W. In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J. Biol. Chem. 281, 26985–26993 (2006).

    CAS  PubMed  Google Scholar 

  16. Waxman, D.J. & Strominger, J.L. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu. Rev. Biochem. 52, 825–869 (1983).

    CAS  PubMed  Google Scholar 

  17. Tipper, D.J. & Strominger, J.L. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl. Acad. Sci. USA 54, 1133–1141 (1965).

    CAS  PubMed  Google Scholar 

  18. Lo, M.-C. et al. A new mechanism of action proposed for ramoplanin. J. Am. Chem. Soc. 122, 3540–3541 (2000).

    CAS  Google Scholar 

  19. Schwartz, B., Markwalder, J.A. & Wang, Y. Lipid II: total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli. J. Am. Chem. Soc. 123, 11638–11643 (2001).

    CAS  PubMed  Google Scholar 

  20. VanNieuwenhze, M.S. et al. The first total synthesis of lipid II: the final monomeric intermediate in bacterial cell wall biosynthesis. J. Am. Chem. Soc. 124, 3656–3660 (2002).

    CAS  PubMed  Google Scholar 

  21. Breukink, E. et al. Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J. Biol. Chem. 278, 19898–19903 (2003).

    CAS  PubMed  Google Scholar 

  22. Tsukamoto, H. & Kahne, D. N-methylimidazolium chloride-catalyzed pyrophosphate formation: application to the synthesis of Lipid I and NDP-sugar donors. Bioorg. Med. Chem. Lett. 21, 5050–5053 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bugg, T.D., Braddick, D., Dowson, C.G. & Roper, D.I. Bacterial cell wall assembly: still an attractive antibacterial target. Trends Biotechnol. 29, 167–173 (2011).

    CAS  PubMed  Google Scholar 

  24. Patin, D. et al. Colicin M hydrolyses branched lipids II from Gram-positive bacteria. Biochimie 94, 985–990 (2012).

    CAS  PubMed  Google Scholar 

  25. Zapun, A. et al. In vitro reconstitution of peptidoglycan assembly from the Gram-positive pathogen Streptococcus pneumoniae. ACS Chem. Biol. 8, 2688–2696 (2013).

    CAS  PubMed  Google Scholar 

  26. Lebar, M.D. et al. Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. J. Am. Chem. Soc. 136, 10874–10877 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, L.Y. et al. Enzymatic synthesis of lipid II and analogues. Angew. Chem. Int. Ed. Engl. 53, 8060–8065 (2014).

    CAS  PubMed  Google Scholar 

  28. Guan, Z., Breazeale, S.D. & Raetz, C.R.H. Extraction and identification by mass spectrometry of undecaprenyl diphosphate-MurNAc-pentapeptide-GlcNAc from Escherichia coli. Anal. Biochem. 345, 336–339 (2005).

    CAS  PubMed  Google Scholar 

  29. Qiao, Y. et al. Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J. Am. Chem. Soc. 136, 14678–14681 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, W. et al. The mechanism of action of lysobactin. J. Am. Chem. Soc. 138, 100–103 (2016).

    CAS  PubMed  Google Scholar 

  31. McPherson, D.C. & Popham, D.L. Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis. J. Bacteriol. 185, 1423–1431 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Silhavy, T.J., Kahne, D. & Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2, a000414 (2010).

    PubMed  PubMed Central  Google Scholar 

  33. Butler, E.K., Davis, R.M., Bari, V., Nicholson, P.A. & Ruiz, N. Structure-function analysis of MurJ reveals a solvent-exposed cavity containing residues essential for peptidoglycan biogenesis in Escherichia coli. J. Bacteriol. 195, 4639–4649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Higashi, Y., Strominger, J.L. & Sweeley, C.C. Biosynthesis of the peptidoglycan of bacterial cell walls. XXI. Isolation of free C55-isoprenoid alcohol and of lipid intermediates in peptidoglycan synthesis from Staphylococcus aureus. J. Biol. Chem. 245, 3697–3702 (1970).

    CAS  PubMed  Google Scholar 

  35. Park, J.T. Uridine-5′-pyrophosphate derivatives. II. Isolation from Staphylococcus aureus. J. Biol. Chem. 194, 877–884 (1952).

    CAS  PubMed  Google Scholar 

  36. Kohlrausch, U. & Höltje, J.V. Analysis of murein and murein precursors during antibiotic-induced lysis of Escherichia coli. J. Bacteriol. 173, 3425–3431 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Anderson, J.S., Matsuhashi, M., Haskin, M.A. & Strominger, J.L. Biosythesis of the peptidoglycan of bacterial cell walls. II. Phospholipid carriers in the reaction sequence. J. Biol. Chem. 242, 3180–3190 (1967).

    CAS  PubMed  Google Scholar 

  38. Vollmer, W., Blanot, D. & de Pedro, M.A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    CAS  PubMed  Google Scholar 

  39. Sieber, P. & Riniker, B. Protection of carboxamide functions by the trityl residue. Application to peptide synthesis. Tetrahedron Lett. 32, 739–742 (1991).

    CAS  Google Scholar 

  40. Hoyland, C.N. et al. Structure of the LdcB LD-carboxypeptidase reveals the molecular basis of peptidoglycan recognition. Structure 22, 949–960 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lovering, A.L., Safadi, S.S. & Strynadka, N.C.J. Structural perspective of peptidoglycan biosynthesis and assembly. Annu. Rev. Biochem. 81, 451–478 (2012).

    CAS  PubMed  Google Scholar 

  42. Lupoli, T.J. et al. Transpeptidase-mediated incorporation of D-amino acids into bacterial peptidoglycan. J. Am. Chem. Soc. 133, 10748–10751 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuru, E. et al. In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew. Chem. Int. Ed. Engl. 51, 12519–12523 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Helassa, N., Vollmer, W., Breukink, E., Vernet, T. & Zapun, A. The membrane anchor of penicillin-binding protein PBP2a from Streptococcus pneumoniae influences peptidoglycan chain length. FEBS J. 279, 2071–2081 (2012).

    CAS  PubMed  Google Scholar 

  45. Thumm, G. & Götz, F. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol. Microbiol. 23, 1251–1265 (1997).

    CAS  PubMed  Google Scholar 

  46. Georgopapadakou, N.H. & Liu, F.Y. Binding of beta-lactam antibiotics to penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis: relation to antibacterial activity. Antimicrob. Agents Chemother. 18, 834–836 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chambers, H.F. & Miick, C. Characterization of penicillin-binding protein 2 of Staphylococcus aureus: deacylation reaction and identification of two penicillin-binding peptides. Antimicrob. Agents Chemother. 36, 656–661 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Łeski, T.A. & Tomasz, A. Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J. Bacteriol. 187, 1815–1824 (2005).

    PubMed  PubMed Central  Google Scholar 

  49. Barreteau, H. et al. Quantitative high-performance liquid chromatography analysis of the pool levels of undecaprenyl phosphate and its derivatives in bacterial membranes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 213–220 (2009).

    CAS  PubMed  Google Scholar 

  50. Hartman, B. & Tomasz, A. Altered penicillin-binding proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 19, 726–735 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. van Heijenoort, Y., Gómez, M., Derrien, M., Ayala, J. & van Heijenoort, J. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J. Bacteriol. 174, 3549–3557 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Anderson, J.S., Meadow, P.M., Haskin, M.A. & Strominger, J.L. Biosynthesis of the peptidoglycan of bacterial cell walls. I. Utilization of uridine diphosphate acetylmuramyl pentapeptide and uridine diphosphate acetylglucosamine for peptidoglycan synthesis by particulate enzymes from Staphylococcus aureus and Micrococcus lysodeikticus. Arch. Biochem. Biophys. 116, 487–515 (1966).

    CAS  PubMed  Google Scholar 

  53. Oku, Y., Kurokawa, K., Ichihashi, N. & Sekimizu, K. Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 150, 45–51 (2004).

    CAS  PubMed  Google Scholar 

  54. Kühner, D., Stahl, M., Demircioglu, D.D. & Bertsche, U. From cells to muropeptide structures in 24 h: peptidoglycan mapping by UPLC-MS. Sci. Rep. 4, 7494 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J.X. Wang at Harvard Small Molecule Mass Spectrometry Facility for assistance in running LC–MS and LC–MS/MS and interpretation of MS/MS spectra. This work was funded by US National Institutes of Health grants R01 GM100951 to N.R., R01 GM076710 to S.W. and D.K., R01 GM066174 to D.K., and a Singapore A*STAR NSS (PhD) scholarship to Y.Q.

Author information

Authors and Affiliations

Authors

Contributions

Y.Q. and V.S. developed methods to isolate and quantify Lipid II from Staphylococcus aureus, Escherichia coli and Bacillus subtilis, based in part on studies conducted by F.R. and K.S.; Y.Q. and V.S. purified S. aureus PBP2; Y.Q. performed studies on PBP2 transpeptidase activity and characterized β-lactam inhibition; N.R. constructed the E. coli MurJA29C strain; S.W. and D.K. designed and supervised the project. The manuscript and figures were prepared by Y.Q., V.S., S.W., and D.K. with input from all authors.

Corresponding authors

Correspondence to Suzanne Walker or Daniel Kahne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–11. (PDF 12719 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Srisuknimit, V., Rubino, F. et al. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat Chem Biol 13, 793–798 (2017). https://doi.org/10.1038/nchembio.2388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing