Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of a viral enzyme by a small-molecule dimer disruptor

Abstract

We identified small-molecule dimer disruptors that inhibit an essential dimeric protease of human Kaposi's sarcoma–associated herpesvirus (KSHV) by screening an α-helical mimetic library. Next, we synthesized a second generation of low-micromolar inhibitors with improved potency and solubility. Complementary methods including size exclusion chromatography and 1H-13C HSQC titration using selectively labeled 13C-Met samples revealed that monomeric protease is enriched in the presence of inhibitor. 1H-15N HSQC titration studies mapped the inhibitor binding site to the dimer interface, and mutagenesis studies targeting this region were consistent with a mechanism where inhibitor binding prevents dimerization through the conformational selection of a dynamic intermediate. These results validate the interface of herpesvirus proteases and other similar oligomeric interactions as suitable targets for the development of small-molecule inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KSHV Pr dimer interface and helical mimetic inhibitors of KSHV Pr activity.
Figure 2: DD2 disrupts the KSHV Pr dimer.
Figure 3: Kinetic studies with DD2 show evidence of mixed-type inhibition.
Figure 4: 1H-15N HSQC titration data map the DD2 binding site to the dimer interface.
Figure 5: Monomer trap model of inhibition by compound DD2.

Similar content being viewed by others

References

  1. Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  Google Scholar 

  2. Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  Google Scholar 

  3. Lo Conte, L., Chothia, C. & Janin, J. The atomic structure of protein-protein recognition sites. J. Mol. Biol. 285, 2177–2198 (1999).

    Article  CAS  Google Scholar 

  4. Berg, T. Modulation of protein-protein interactions with small organic molecules. Angew. Chem. Int. Edn. Engl. 42, 2462–2481 (2003).

    Article  CAS  Google Scholar 

  5. Wells, J.A. & McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–1009 (2007).

    Article  CAS  Google Scholar 

  6. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    Article  CAS  Google Scholar 

  7. Fields, B.N. et al. Fields Virology 3177 (Lippincott Williams & Wilkins, Philadelphia, 2006).

  8. Gopalsamy, A. et al. Design and syntheses of 1,6-naphthalene derivatives as selective HCMV protease inhibitors. J. Med. Chem. 47, 1893–1899 (2004).

    Article  CAS  Google Scholar 

  9. Gao, M. et al. The protease of herpes simplex virus type 1 is essential for functional capsid formation and viral growth. J. Virol. 68, 3702–3712 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Preston, V.G., Coates, J.A. & Rixon, F.J. Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J. Virol. 45, 1056–1064 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sheaffer, A.K. et al. Evidence for controlled incorporation of herpes simplex virus type 1 UL26 protease into capsids. J. Virol. 74, 6838–6848 (2000).

    Article  CAS  Google Scholar 

  12. Weinheimer, S.P. et al. Autoproteolysis of herpes simplex virus type 1 protease releases an active catalytic domain found in intermediate capsid particles. J. Virol. 67, 5813–5822 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Welch, A.R., Woods, A.S., McNally, L.M., Cotter, R.J. & Gibson, W. A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc. Natl. Acad. Sci. USA 88, 10792–10796 (1991).

    Article  CAS  Google Scholar 

  14. Borthwick, A.D. et al. Design and synthesis of pyrrolidine-5,5-trans-lactams (5-oxohexahydropyrrolo[3,2-b]pyrroles) as novel mechanism-based inhibitors of human cytomegalovirus protease. 2. Potency and chirality. J. Med. Chem. 45, 1–18 (2002).

    Article  CAS  Google Scholar 

  15. Borthwick, A.D. et al. Pyrrolidine-5,5-trans-lactams as novel mechanism-based inhibitors of human cytomegalovirus protease. Part 3: potency and plasma stability. Bioorg. Med. Chem. Lett. 12, 1719–1722 (2002).

    Article  CAS  Google Scholar 

  16. Borthwick, A.D. et al. Design and synthesis of monocyclic beta-lactams as mechanism-based inhibitors of human cytomegalovirus protease. Bioorg. Med. Chem. Lett. 8, 365–370 (1998).

    Article  CAS  Google Scholar 

  17. Ogilvie, W. et al. Peptidomimetic inhibitors of the human cytomegalovirus protease. J. Med. Chem. 40, 4113–4135 (1997).

    Article  CAS  Google Scholar 

  18. Waxman, L. & Darke, P.L. The herpesvirus proteases as targets for antiviral chemotherapy. Antivir. Chem. Chemother. 11, 1–22 (2000).

    Article  CAS  Google Scholar 

  19. Batra, R., Khayat, R. & Tong, L. Molecular mechanism for dimerization to regulate the catalytic activity of human cytomegalovirus protease. Nat. Struct. Biol. 8, 810–817 (2001).

    Article  CAS  Google Scholar 

  20. Buisson, M. et al. Functional determinants of the Epstein-Barr virus protease. J. Mol. Biol. 311, 217–228 (2001).

    Article  CAS  Google Scholar 

  21. Darke, P.L. et al. Active human cytomegalovirus protease is a dimer. J. Biol. Chem. 271, 7445–7449 (1996).

    Article  CAS  Google Scholar 

  22. Margosiak, S.A., Vanderpool, D.L., Sisson, W., Pinko, C. & Kan, C.C. Dimerization of the human cytomegalovirus protease: kinetic and biochemical characterization of the catalytic homodimer. Biochemistry 35, 5300–5307 (1996).

    Article  CAS  Google Scholar 

  23. Nomura, A.M., Marnett, A.B., Shimba, N., Dotsch, V. & Craik, C.S. Induced structure of a helical switch as a mechanism to regulate enzymatic activity. Nat. Struct. Mol. Biol. 12, 1019–1020 (2005).

    Article  CAS  Google Scholar 

  24. Pray, T.R., Reiling, K.K., Demirjian, B.G. & Craik, C.S. Conformational change coupling the dimerization and activation of KSHV protease. Biochemistry 41, 1474–1482 (2002).

    Article  CAS  Google Scholar 

  25. Reiling, K.K., Pray, T.R., Craik, C.S. & Stroud, R.M. Functional consequences of the Kaposi's sarcoma-associated herpesvirus protease structure: regulation of activity and dimerization by conserved structural elements. Biochemistry 39, 12796–12803 (2000).

    Article  CAS  Google Scholar 

  26. Schmidt, U. & Darke, P.L. Dimerization and activation of the herpes simplex virus type 1 protease. J. Biol. Chem. 272, 7732–7735 (1997).

    Article  CAS  Google Scholar 

  27. Nomura, A.M., Marnett, A.B., Shimba, N., Dotsch, V. & Craik, C.S. One functional switch mediates reversible and irreversible inactivation of a herpesvirus protease. Biochemistry 45, 3572–3579 (2006).

    Article  CAS  Google Scholar 

  28. Marnett, A.B., Nomura, A.M., Shimba, N., Ortiz de Montellano, P.R. & Craik, C.S. Communication between the active sites and dimer interface of a herpesvirus protease revealed by a transition-state inhibitor. Proc. Natl. Acad. Sci. USA 101, 6870–6875 (2004).

    Article  CAS  Google Scholar 

  29. Buisson, M. et al. The crystal structure of the Epstein-Barr virus protease shows rearrangement of the processed C terminus. J. Mol. Biol. 324, 89–103 (2002).

    Article  CAS  Google Scholar 

  30. Qiu, X. et al. Unique fold and active site in cytomegalovirus protease. Nature 383, 275–279 (1996).

    Article  CAS  Google Scholar 

  31. Qiu, X. et al. Crystal structure of varicella-zoster virus protease. Proc. Natl. Acad. Sci. USA 94, 2874–2879 (1997).

    Article  CAS  Google Scholar 

  32. Shieh, H.S. et al. Three-dimensional structure of human cytomegalovirus protease. Nature 383, 279–282 (1996).

    Article  CAS  Google Scholar 

  33. Tong, L. et al. A new serine-protease fold revealed by the crystal structure of human cytomegalovirus protease. Nature 383, 272–275 (1996).

    Article  CAS  Google Scholar 

  34. Hoog, S.S. et al. Active site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex virus protease/inhibitor complex. Biochemistry 36, 14023–14029 (1997).

    Article  CAS  Google Scholar 

  35. Pray, T.R., Nomura, A.M., Pennington, M.W. & Craik, C.S. Auto-inactivation by cleavage within the dimer interface of Kaposi's sarcoma-associated herpesvirus protease. J. Mol. Biol. 289, 197–203 (1999).

    Article  CAS  Google Scholar 

  36. Shimba, N., Nomura, A.M., Marnett, A.B. & Craik, C.S. Herpesvirus protease inhibition by dimer disruption. J. Virol. 78, 6657–6665 (2004).

    Article  CAS  Google Scholar 

  37. Lu, F. et al. Proteomimetic libraries: design, synthesis, and evaluation of p53–MDM2 interaction inhibitors. J. Comb. Chem. 8, 315–325 (2006).

    Article  CAS  Google Scholar 

  38. Backes, B.J., Harris, J.L., Leonetti, F., Craik, C.S. & Ellman, J.A. Synthesis of positional-scanning libraries of fluorogenic peptide substrates to define the extended substrate specificity of plasmin and thrombin. Nat. Biotechnol. 18, 187–193 (2000).

    Article  CAS  Google Scholar 

  39. Lazic, A., Goetz, D.H., Nomura, A.M., Marnett, A.B. & Craik, C.S. Substrate modulation of enzyme activity in the herpesvirus protease family. J. Mol. Biol. 373, 913–923 (2007).

    Article  CAS  Google Scholar 

  40. Feng, B.Y. & Shoichet, B.K. A detergent-based assay for the detection of promiscuous inhibitors. Nat. Protoc. 1, 550–553 (2006).

    Article  CAS  Google Scholar 

  41. Lee, G.M. & Craik, C.S. Trapping moving targets with small molecules. Science 324, 213–215 (2009).

    Article  CAS  Google Scholar 

  42. Kussie, P.H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996).

    Article  CAS  Google Scholar 

  43. Chen, P. et al. Structure of the human cytomegalovirus protease catalytic domain reveals a novel serine protease fold and catalytic triad. Cell 86, 835–843 (1996).

    Article  CAS  Google Scholar 

  44. Wu, T.D. et al. Mutation patterns and structural correlates in human immunodeficiency virus type 1 protease following different protease inhibitor treatments. J. Virol. 77, 4836–4847 (2003).

    Article  CAS  Google Scholar 

  45. Hardy, J.A., Lam, J., Nguyen, J.T., O'Brien, T. & Wells, J.A. Discovery of an allosteric site in the caspases. Proc. Natl. Acad. Sci. USA 101, 12461–12466 (2004).

    Article  CAS  Google Scholar 

  46. Scheer, J.M., Romanowski, M.J. & Wells, J.A. A common allosteric site and mechanism in caspases. Proc. Natl. Acad. Sci. USA 103, 7595–7600 (2006).

    Article  CAS  Google Scholar 

  47. Bannwarth, L. & Reboud-Ravaux, M. An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface. Biochem. Soc. Trans. 35, 551–554 (2007).

    Article  CAS  Google Scholar 

  48. Lee, S.G. & Chmielewski, J. Rapid synthesis and in situ screening of potent HIV-1 protease dimerization inhibitors. Chem. Biol. 13, 421–426 (2006).

    Article  CAS  Google Scholar 

  49. Unal, A. et al. The protease and the assembly protein of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8). J. Virol. 71, 7030–7038 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brignole, E.J. & Gibson, W. Enzymatic activities of human cytomegalovirus maturational protease assemblin and its precursor (pPR, pUL80a) are comparable: [corrected] maximal activity of pPR requires self-interaction through its scaffolding domain. J. Virol. 81, 4091–4103 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank W. Gibson (The Johns Hopkins University School of Medicine) for providing us with the CMV protease expression plasmid and for valuable feedback on the manuscript. This work was funded by US National Institutes of Health grants T32 GMO7810 and AIO67423 (C.S.C.) and by the American Lebanese and Syrian Associated Charities and the St. Jude Children's Research Hospital (R.K.G.). We also thank the University of California, San Francisco–Gladstone Institute for Virology and Immunology/Center for AIDS Research for the Clinical Science Pilot Award (P30-AI027763 to G.M.L.).

Author information

Authors and Affiliations

Authors

Contributions

T.S., G.M.L., A.L., C.S.C. and R.K.G. designed research; T.S., G.M.L. and A.L. carried out research; L.A.A., P.V. and C.M.R. performed chemical synthesis; T.S., G.M.L., A.L., C.S.C. and R.K.G. analyzed and interpreted data; and T.S., C.S.C. and R.K.G. prepared the manuscript.

Corresponding author

Correspondence to Charles S Craik.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Scheme 1, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahian, T., Lee, G., Lazic, A. et al. Inhibition of a viral enzyme by a small-molecule dimer disruptor. Nat Chem Biol 5, 640–646 (2009). https://doi.org/10.1038/nchembio.192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing