Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles

Abstract

A continuing goal in catalysis is to unite the advantages of homogeneous and heterogeneous catalytic processes. To this end, nanoparticles represent a new frontier in heterogeneous catalysis, where this unification can also be supplemented by the ability to obtain new or divergent reactivity and selectivity. We report a novel method for applying heterogeneous catalysts to known homogeneous catalytic reactions through the design and synthesis of electrophilic platinum nanoparticles. These nanoparticles are selectively oxidized by the hypervalent iodine species PhICl2, and catalyse a range of π-bond activation reactions previously only catalysed through homogeneous processes. Multiple experimental methods are used to unambiguously verify the heterogeneity of the catalytic process. The discovery of treatments for nanoparticles that induce the desired homogeneous catalytic activity should lead to the further development of reactions previously inaccessible in heterogeneous catalysis. Furthermore, a size and capping agent study revealed that Pt PAMAM dendrimer-capped nanoparticles demonstrate superior activity and recyclability compared with larger, polymer-capped analogues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depiction of the two nanoparticle synthesis techniques used and the initial reactivity results for electrophilic catalysis.
Figure 2: Monitoring the Pt nanoparticle catalysed reaction to show size and capping-agent effects as well as recyclability.
Figure 3: Cyclization reactions using Pt nanoparticles.
Figure 4: Cyclization reaction using Pd nanoparticles.
Figure 5: Oxidatively modified Pt nanoparticle catalysed cyclization of phenylurea 11.
Figure 6: Results from catalyst heterogeneity tests.

Similar content being viewed by others

References

  1. Zaera, F. & Joyner, R. W. (eds) The 13th International Symposium on Relations Between Homogeneous and Heterogeneous Catalysis. Top. Catal. 48 (2008).

  2. Durán Pachón, L. & Rothenberg, G. Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl. Organometal. Chem. 22, 288–299 (2008).

    Article  Google Scholar 

  3. Astruc, D., Lu, F. & Ruiz Aranzaes, J. R. Nanoparticles as recyclable catalysts. The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852–7872 (2005).

    Article  CAS  Google Scholar 

  4. de Jesús, E. & Flores, J. C. Dendrimers: Solutions for catalyst separation and recycling. Ind. Eng. Chem. Res. 47, 7968–7981 (2008).

    Article  Google Scholar 

  5. Kuhn, J. N., Huang, W., Tsung, C.-K., Zhang, Y. & Somorjai, G. A. Structure sensitivity of carbon-nitrogen ring opening: Impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J. Am. Chem. Soc. 130, 14026–14027 (2008).

    Article  CAS  Google Scholar 

  6. Bhattacharjee, S., Dotzauer, D. M. & Bruening, M. L. Selectivity as a function of nanoparticle size in the catalytic hydrogenation of unsaturated alcohols. J. Am. Chem. Soc. 131, 3601–3610 (2009).

    Article  CAS  Google Scholar 

  7. Lee, I., Delbecq, F., Morales, R., Albiter, M. A. & Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nature Mater. 8, 132–138 (2009).

    Article  CAS  Google Scholar 

  8. Tian, N., Zhou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  Google Scholar 

  9. Mahmoud, M. A., Tabor, C. E., El-Sayed, M. A., Ding, Y. & Wang, Z. L. A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal. J. Am. Chem. Soc. 130, 4590–4591 (2008).

    Article  CAS  Google Scholar 

  10. Narayanan, R. & El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4, 1343–1348 (2004).

    Article  CAS  Google Scholar 

  11. Lee, H. et al. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45, 7824–7828 (2006).

    Article  CAS  Google Scholar 

  12. Rioux, R. M. et al. Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects. Top. Catal. 39, 167–174 (2006).

    Article  CAS  Google Scholar 

  13. Tsung, C.-K. et al. Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 131, 5816–5822 (2009).

    Article  CAS  Google Scholar 

  14. Delbecq, F. & Zaera, F. Origin of the selectivity for trans-to-cis isomerization in 2-butene on pt(111) single crystal surfaces. J. Am. Chem. Soc. 130, 14924–14925 (2008).

    Article  CAS  Google Scholar 

  15. Scott, R. W. J., Wilson, O. M. & Crooks R. M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 109, 692–704 (2005).

    Article  CAS  Google Scholar 

  16. Narayanan, R., Tabor, C. & El-Sayed, M. A. Can the observed changes in the size or shape of a colloidal nanocatalyst reveal the nanocatalysis mechanism type: homogeneous or heterogeneous? Top. Catal. 48, 60–74 (2008).

    Article  CAS  Google Scholar 

  17. Bernechea, M., de Jesús, E., López-Mardomingo, C. & Terreros, P. Dendrimer-encapsulated Pd nanoparticles versus palladium acetate as catalytic precursors in the stille reaction in water. Inorg. Chem. 48, 4491–4496 (2007).

    Article  Google Scholar 

  18. Zhang, X. & Corma, A. Supported gold(iii) catalysts for highly efficient three-component coupling reactions. Angew. Chem. Int. Ed. 47, 4359–4361 (2008).

    Google Scholar 

  19. Han, J., Liu, Y. & Guo, R. Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling reaction in water. J. Am. Chem. Soc. 131, 2060–2061 (2009).

    Article  CAS  Google Scholar 

  20. Li, Y., Hong, X. M., Collard, D. M. & El-Sayed, M. A. Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Org. Lett. 2, 2385–2388 (2000).

    Article  CAS  Google Scholar 

  21. Djakovitch, L., Köhler, K. & de Vries, J. G. The role of palladium nanoparticles as catalysts for carbon–carbon coupling reactions in Nanoparticles and Catalysis (ed. Astruc, D.) Ch. 10, 303–348 (Wiley-VCH, 2008).

  22. Moreno-Maas, M. & Pleixats, R. Formation of carbon-carbon bonds under catalysis by transition-metal nanoparticles. Acc. Chem. Res. 36, 638–643 (2003).

    Article  Google Scholar 

  23. Durand, J., Teuma, E. & Gomez, M. An overview of palladium nanocatalysts: surface and molecular reactivity. Eur. J. Inorg. Chem. 23, 3577–3586 (2008).

    Article  Google Scholar 

  24. Astruc, D. Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon-carbon coupling precatalysts: a unifying view. Inorg. Chem. 46, 1884–1894 (2007).

    Article  CAS  Google Scholar 

  25. Thathagar, M. B., ten Elshof, J. E. & Rothenberg, G. Pd nanoclusters in C–C coupling reactions: proof of leaching. Angew. Chem. Int. Ed. 45, 2886–2890 (2006).

    Article  CAS  Google Scholar 

  26. Crooks, R. M., Mingqi, Z., Sun, L., Checkhik, V. & Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34, 181–190 (2001).

    Article  CAS  Google Scholar 

  27. Rioux, R. M., Song, H., Hoefelmeyer, J. D., Yang, P. & Somorjai, G. A. High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J. Phys. Chem. B 109, 2192–2202 (2005).

    Article  CAS  Google Scholar 

  28. Huang, W. et al. Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett. 8, 2027–2034 (2008).

    Article  CAS  Google Scholar 

  29. Fürstner, A. & Davies, P. W. Heterocycles by PtCl2-catalyzed intramolecular carboalkoxylation or carboamination of alkynes. J. Am. Chem. Soc. 127, 15024–15025 (2005).

    Article  Google Scholar 

  30. Knecht, M. R. et al. Synthesis and characterization of Pt dendrimer-encapsulated nanoparticles: effect of the template on nanoparticle formation. Chem. Mater. 20, 5218–5228 (2008).

    Article  CAS  Google Scholar 

  31. Ozturk, O. et al. Thermal decomposition of generation-4 polyamidoamine dendrimer films: decomposition catalyzed by dendrimer-encapsulated Pt particles. Langmuir 21, 3998–4006 (2005).

    Article  CAS  Google Scholar 

  32. Ye, H., Scott, R. W. J. & Crooks, R. M. Synthesis, characterization, and surface immobilization of platinum and palladium nanoparticles encapsulated within amine-terminated poly(amidoamine) dendrimers. Langmuir 20, 2915–2920 (2004).

    Article  CAS  Google Scholar 

  33. Doná, E. et al. Halogen-induced corrosion of platinum. J. Am. Chem. Soc. 131, 2827–2829 (2009).

    Article  Google Scholar 

  34. Whitfield, S. R. & Sanford, M. S. Reactivity of Pd(ii) complexes with electrophilic chlorinating reagents: isolation of Pd(iv) products and observation of C–Cl bond-forming reductive elimination. J. Am. Chem. Soc. 129, 15142–15143 (2007).

    Article  CAS  Google Scholar 

  35. Li, Y. & El-Sayed, M. A. The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J. Phys. Chem. B 105, 8938–8943 (2001).

    Article  CAS  Google Scholar 

  36. Deutsch, D. S. et al. FT-IR investigation of the thermal decomposition of poly(amidoamine) dendrimers and dendrimer-metal nanocomposites supported on Al2O3 and ZrO2 . J. Phys. Chem. C 111, 4246–4255 (2007).

    Article  CAS  Google Scholar 

  37. Lang, H., May, R. A., Iversen, B. L. & Chandler, B. D. Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts. J. Am. Chem. Soc. 125, 14832–14836 (2003).

    Article  CAS  Google Scholar 

  38. Cai, W., Zhong, H. & Zhang, L. Optical measurements of oxidation behavior of silver nanometer particle within pores of silica host. J. Appl. Phys. 83, 1705–1710 (1998).

    Article  CAS  Google Scholar 

  39. Brandes, E. A. (ed.) Smithells Metal Reference Book 6th edn (Butterworths, 1983).

  40. Bond, G. C. Supported metal catalysts: Some unsolved problems. Chem. Soc. Rev. 20, 441–475 (1991).

    Article  CAS  Google Scholar 

  41. LaLonde, R. L., Sherry, B. D., Kang, E. J. & Toste, F. D. Gold(i)-catalyzed enantioselective intramolecular hydroamination of allenes. J. Am. Chem. Soc. 129, 2452–2453 (2007).

    Article  CAS  Google Scholar 

  42. Barluenga, J., Trincado, M., Rubio, E. & González, J. M. IPy2BF4-promoted intramolecular addition of masked and unmasked anilines to alkynes: direct assembly of 3-iodoindole cores. Angew. Chem. Int. Ed. 42, 2406–2409 (2003).

    Article  CAS  Google Scholar 

  43. Fürstner, A. & Mamane, V. Flexible synthesis of phenanthrenes by a PtCl2-catalyzed cycloisomerization reaction. J. Org. Chem. 67, 6264–6267 (2002).

    Article  Google Scholar 

  44. Nakamura, I., Sato, Y. & Terada, M. Platinum-catalyzed dehydroalkoxylation-cyclization cascade via N–O bond cleavage. J. Am. Chem. Soc. 131, 4198–4199 (2009).

    Article  CAS  Google Scholar 

  45. Davies, I. W., Matty, L., Hughes, D. L. & Reider, P. J. Are heterogeneous catalysts precursors to homogeneous catalysts? J. Am. Chem. Soc. 123, 10139–10140 (2001).

    Article  CAS  Google Scholar 

  46. Dahan, A. & Portnoy, M. Pd catalysis on dendronized solid support: generation effects and the influence of the backbone structure. J. Am. Chem. Soc. 129, 5860–5869 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the US DOE under Contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

C.A.W, W.H., C.-K.T. and J.N.K. performed the experiments and synthesized materials, substrates and catalysts. F.D.T. and G.A.S. supervised the research. All authors contributed to the conception of the experiments, discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Gabor A. Somorjai or F. Dean Toste.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1003 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witham, C., Huang, W., Tsung, CK. et al. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nature Chem 2, 36–41 (2010). https://doi.org/10.1038/nchem.468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing