Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unique physicochemical and catalytic properties dictated by the B3NO2 ring system

Abstract

The expansion of molecular diversity beyond what nature can produce is a fundamental objective in chemical sciences. Despite the rich chemistry of boron-containing heterocycles, the 1,3-dioxa-5-aza-2,4,6-triborinane (DATB) ring system, which is characterized by a six-membered B3NO2 core, remains elusive. Here, we report the synthesis of m-terphenyl-templated DATB derivatives, displaying high stability and peculiar Lewis acidity arising from the three suitably arranged boron atoms. We identify a particular utility for DATB in the dehydrative amidation of carboxylic acids and amines, a reaction of high academic and industrial importance. The three boron sites are proposed to engage in substrate assembly, lowering the entropic cost of the transition state, in contrast with the operative mechanism of previously reported catalysts and amide coupling reagents. The distinct mechanistic pathway dictated by the DATB core will advance not only such amidations, but also other reactions driven by multisite activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical space for six-membered heterocycles composed of B, C, N and O atoms and the structure of DATBs.
Figure 2: Synthesis and properties of DATBs.
Figure 3: Utility of DATB derivatives in catalytic direct amidations inspired by a calculated structure, where all three B atoms are coordinated.
Figure 4: NMR study and plausible catalytic cycle for the catalytic direct amidations promoted by DATB.

Similar content being viewed by others

References

  1. Jiang, W., Li, Y. & Wang, Z. Heteroarenes as high performance organic semiconductors. Chem. Soc. Rev. 42, 6113–6127 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Campbell, P. G., Marwitz, A. J. & Liu, S. Y. Recent advances in azaborine chemistry. Angew. Chem. Int. Ed. 51, 6074–6092 (2012).

    Article  CAS  Google Scholar 

  3. Baranac-Stojanović, M. Aromaticity and stability of azaborines. Chem. Eur. J. 20, 16558–16565 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, X. Y., Wang, J. Y. & Pei, J. BN heterosuperbenzenes synthesis and properties. Chem. Eur. J. 21, 3528–3539 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Bonifazi, D. et al. Boron-nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives. Chem. Commun. 51, 15222–15236 (2015).

    Article  CAS  Google Scholar 

  6. Pattabiraman, V. R. & Bode, J. W. Rethinking amide bond synthesis. Nature 480, 471–479 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Roughley, S. D. & Jordan, A. M. The medicinal chemist's toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Dunetz, J. R., Magano, J. & Weisenburger, G. A. Large-scale applications of amide coupling reagents for the synthesis of pharmaceuticals. Org. Process Res. Dev. 20, 140–177 (2016).

    Article  CAS  Google Scholar 

  9. Meller, A., Habben, C., Noltemeyer, M. & Sheldrick, G. M. Crystal and molecular structure of 5-p-fluorophenyl-2,4.6-trimethylcyclo-l,3-dioxa-2.4,6-triborane. Z. Naturforsch. B. 37, 1504–1506 (1982).

    Article  Google Scholar 

  10. Oesterle, R., Maringgele, W. & Meller, A. Gezielte synthesen für boroxazine. J. Organomet. Chem. 284, 281–289 (1985).

    Article  CAS  Google Scholar 

  11. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).

    Article  CAS  Google Scholar 

  12. Iwadate, N. & Suginome, M. Differentially protected diboron for regioselective diboration of alkynes: internal-selective cross-coupling of 1-alkene-1,2-diboronic acid derivatives. J. Am. Chem. Soc. 132, 2548–2549 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Dewar, M. J. S., Kubba, V. P. & Pettit, R. New heteroaromatic compounds. part I. 9-Aza-10-bora-phenanthrene. J. Chem. Soc. 3073–3076 (1958).

  14. Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & Schleyer, P. V. R. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

    Article  CAS  Google Scholar 

  15. Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials 2nd edn (Wiley-VCH, 2011).

    Book  Google Scholar 

  16. Imamura, G. et al. Electronic structure and graphenization of hexaphenylborazine. J. Phys. Chem. C 116, 16305–16310 (2012).

    Article  CAS  Google Scholar 

  17. Müller, M., Behnle, S., Maichle-Mössmer, C. & Bettinger, H. F. Boron–nitrogen substituted perylene obtained through photocyclisation. Chem. Commun. 50, 7821–7823 (2014).

    Article  Google Scholar 

  18. Tokunaga, Y. Boroxine chemistry: from fundamental studies to applications in supramolecular and synthetic organic chemistry. Heterocycles 87, 991–1021 (2013).

    Article  CAS  Google Scholar 

  19. El-Faham, A. & Albericio, F. Peptide coupling reagents, more than a letter soup. Chem. Rev. 111, 6557–6602 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Constable, D. J. C. et al. Key green chemistry research areas—a perspective from pharmaceutical manufacturers. Green Chem. 9, 411–420 (2007).

    Article  CAS  Google Scholar 

  21. Charville, H., Jackson, D., Hodges, G. & Whiting, A. The thermal and boron-catalysed direct amide formation reactions: mechanistically understudied yet important processes. Chem. Commun. 46, 1813–1823 (2010).

    Article  CAS  Google Scholar 

  22. Lanigan, R. M. & Sheppard, T. D. Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions. Eur. J. Org. Chem. 2013, 7453–7465 (2013).

    Article  CAS  Google Scholar 

  23. Lundberg, H., Tinnis, F., Selander, N. & Adolfsson, H. Catalytic amide formation from non-activated carboxylic acids and amines. Chem. Soc. Rev. 43, 2714–2742 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Zheng, H. & Hall, D. G. Boronic acid catalysis: an atom-economical platform for direct activation and functionalization of carboxylic acids and alcohols. Aldrichmica Acta 47, 41–51 (2014).

    CAS  Google Scholar 

  25. Ishihara, K. & Yamamoto, H. Arylboron compounds as acid catalysts in organic synthetic transformations. Eur. J. Org. Chem. 1999, 527–538 (1999).

    Article  Google Scholar 

  26. Ishihara, K., Ohara, S. & Yamamoto, H. 3,4,5-Trifluorobenzeneboronic acid as an extremely active amidation catalyst. J. Org. Chem. 61, 4196–4197 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Ishihara, K., Kondo, S. & Yamamoto, H. 3,5-Bis(perfluorodecyl)phenylboronic acid as an easily recyclable direct amide condensation catalyst. Synlett 2001, 1371–1374 (2001).

    Article  Google Scholar 

  28. Latta, R., Springsteen, G. & Wang, B. Development and synthesis of an arylboronic acid-based solid-phase amidation catalyst. Synthesis 2001, 1611–1613 (2001).

    Article  Google Scholar 

  29. Arnold, K. et al. To catalyze or not to catalyze? Insight into direct amide bond formation from amines and carboxylic acids under thermal and catalyzed conditions. Adv. Synth. Catal. 348, 813–820 (2006).

    Article  CAS  Google Scholar 

  30. Arnold, K., Davies, B., Hérault, D. & Whiting, A. Asymmetric direct amide synthesis by kinetic amine resolution: a chiral bifunctional aminoboronic acid catalyzed reaction between a racemic amine and an achiral carboxylic acid. Angew. Chem. Int. Ed. 47, 2673–2676 (2008).

    Article  CAS  Google Scholar 

  31. Al-Zoubi, R. M., Marion, O. & Hall, D. G. Direct and waste-free amidations and cycloadditions by organocatalytic activation of carboxylic acids at room temperature. Angew. Chem. Int. Ed. 47, 2876–2879 (2008).

    Article  CAS  Google Scholar 

  32. Adolfsson, H., Lundberg, H. & Tinnis, F. Titanium(IV) isopropoxide as an efficient catalyst for direct amidation of nonactivated carboxylic acids. Synlett 23, 2201–2204 (2012).

    Article  CAS  Google Scholar 

  33. Lundberg, H., Tinnis, F. & Adolfsson, H. Direct amide coupling of non-activated carboxylic acids and amines catalysed by zirconium(IV) chloride. Chem. Eur. J. 18, 3822–3826 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Gernigon, N., Al-Zoubi, R. M. & Hall, D. G. Direct amidation of carboxylic acids catalyzed by ortho-iodo arylboronic acids: catalyst optimization, scope, and preliminary mechanistic study supporting a peculiar halogen acceleration effect. J. Org. Chem. 77, 8386–8400 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, S. et al. Direct amidation of amino acid derivatives catalyzed by arylboronic acids: applications in dipeptide synthesis. Eur. J. Org. Chem. 2013, 5692–5700 (2013).

    Article  CAS  Google Scholar 

  36. Yamashita, R., Sakakura, A. & Ishihara, K. Primary alkylboronic acids as highly active catalysts for the dehydrative amide condensation of α-hydroxycarboxylic acids. Org. Lett. 15, 3654–3657 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Mohy El Dine, T., Erb, W., Berhault, Y., Rouden, J. & Blanchet, J. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis. J. Org. Chem. 80, 4532–4544 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Lundberg, H. & Adolfsson, H. Hafnium-catalyzed direct amide formation at room temperature. ACS Catal. 5, 3271–3277 (2015).

    Article  CAS  Google Scholar 

  39. Mohy El Dine, T., Rouden, J. & Blanchet, J. Borinic acid catalysed peptide synthesis. Chem. Commun. 51, 16084–16087 (2015).

    Article  CAS  Google Scholar 

  40. Tam, E. K. W., Rita, Liu, L. Y. & Chen, A. 2-Furanylboronic acid as an effective catalyst for the direct amidation of carboxylic acids at room temperature. Eur. J. Org. Chem. 2015, 1100–1107 (2015).

    Article  CAS  Google Scholar 

  41. Ishihara, K. & Lu, Y. Boronic acid–DMAPO cooperative catalysis for dehydrative condensation between carboxylic acids and amines. Chem. Sci. 7, 1276–1280 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Chaudhari, P. S., Salim, S. D., Sawant, R. V. & Akamanchi, K. G. Sulfated tungstate: a new solid heterogeneous catalyst for amide synthesis. Green Chem. 12, 1707–1710 (2010).

    Article  CAS  Google Scholar 

  43. Bannister, R. M., Brookes, M. H., Evans, G. R., Katz, R. B. & Tyrrell, N. D. A scaleable route to the pure enantiomers of verapamil. Org. Process Res. Dev. 4, 467–472 (2000).

    Article  CAS  Google Scholar 

  44. Mylavarapu, R. K. et al. Boric acid catalyzed amidation in the synthesis of active pharmaceutical ingredients. Org. Process Res. Dev. 11, 1065–1068 (2007).

    Article  CAS  Google Scholar 

  45. Shinde, G. B., Niphade, N. C., Deshmukh, S. P., Toche, R. B. & Mathad, V. T. Industrial application of the Forster reaction: novel one-pot synthesis of cinacalcet hydrochloride, a calcimimetic agent. Org. Process Res. Dev. 15, 455–461 (2011).

    Article  CAS  Google Scholar 

  46. Schafer, G., Matthey, C. & Bode, J. W. Facile synthesis of sterically hindered and electron-deficient secondary amides from isocyanates. Angew. Chem. Int. Ed. 51, 9173–9175 (2012).

    Article  CAS  Google Scholar 

  47. Li, J., Lear, M. J. & Hayashi, Y. Sterically demanding oxidative amidation of α-substituted malononitriles with amines using O2 . Angew. Chem. Int. Ed. 55, 9060–9064 (2016).

    Article  CAS  Google Scholar 

  48. Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 25, 84–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Faivre, S., Demetri, G., Sargent, W. & Raymond, E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug. Discov. 6, 734–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. McKeage, K. & Plosker, G. L. Amisulpride. CNS Drugs 18, 933–956 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Prof. Stuart L. Schreiber on the occasion of his 60th birthday. This work was supported by a Grant-in-Aid for Young Scientists A (KAKENHI no. 25713002) from the JSPS. N.K. thanks the JSPS for financial support via KAKENHI grant no. JP16H01043 ‘Precisely Designed Catalysts with Customized Scaffolding’. H.N. is a JSPS research fellow. The authors thank T. Kimura for the X-ray crystallographic analysis of 1a, 8a and 9, and they would also like to thank R. Sawa, Y. Kubota and K. Iijima for technical assistance with the analysis of 11B NMR spectra.

Author information

Authors and Affiliations

Authors

Contributions

H.N., M.S. and N.K. conceived and designed the experiments. H.N., M.F. and Y.A. performed the experiments and analysed the data. H.N. conducted the density functional theory calculations. H.N., M.S. and N.K. co-wrote the paper.

Corresponding authors

Correspondence to Masakatsu Shibasaki or Naoya Kumagai.

Ethics declarations

Competing interests

The Institute of Microbial Chemistry (BIKAKEN) has filed a patent application on DATB catalysts for general direct amide-forming reactions.

Supplementary information

Supplementary information

Supplementary information (PDF 12634 kb)

Supplementary information

Crystallographic data for compound 1a. (CIF 350 kb)

Supplementary information

Structure factors file for compound 8a. (CIF 587 kb)

Supplementary information

Crystallographic data for compound 9. (CIF 843 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noda, H., Furutachi, M., Asada, Y. et al. Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nature Chem 9, 571–577 (2017). https://doi.org/10.1038/nchem.2708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing