Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switchable regioselectivity in amine-catalysed asymmetric cycloadditions

Abstract

Building small-molecule libraries with structural and stereogenic diversity plays an important role in drug discovery. The development of switchable intermolecular cycloaddition reactions from identical substrates in different regioselective fashions would provide an attractive protocol. However, this also represents a challenge in organic chemistry, because it is difficult to control regioselectivity to afford the products exclusively and at the same time achieve high levels of stereoselectivity. Here, we report the diversified cycloadditions of α′-alkylidene-2-cyclopentenones catalysed by cinchona-derived primary amines. An asymmetric γ,β′-regioselective intermolecular [6+2] cycloaddition reaction with 3-olefinic (7-aza)oxindoles is realized through the in situ generation of formal 4-aminofulvenes, while a different β,γ-regioselective [2+2] cycloaddition reaction with maleimides to access fused cyclobutanes is disclosed. In contrast, an intriguing α,γ-regioselective [4+2] cycloaddition reaction is uncovered with the same set of substrates, by employing an unprecedented dual small-molecule catalysis of amines and thiols. All of the cycloaddition reactions exhibit excellent regio- and stereoselectivity, producing a broad spectrum of chiral architectures with high structural diversity and molecular complexity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of [6+2] cycloadditions with fulvenes and outlines of distinct regioselective cycloaddition patterns of α′-alkylidene-2-cyclopentenones via aminocatalysis.
Figure 2: Discovery of switchable [4+2] cycloadditions via amine and thiol dual catalysis.

Similar content being viewed by others

References

  1. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    CAS  PubMed  Google Scholar 

  2. Dondoni, A. & Massi, A. Asymmetric organocatalysis: From infancy to adolescence. Angew. Chem. Int. Ed. 47, 4638–4660 (2008).

    CAS  Google Scholar 

  3. Melchiorre, P., Marigo, M., Carlone, A. & Bartoli, G. Asymmetric aminocatalysis—gold rush in organic chemistry. Angew. Chem. Int. Ed. 47, 6138–6171 (2008).

    CAS  Google Scholar 

  4. Bertelsen, S. & Jørgensen, K. A . Organocatalysis—after the gold rush. Chem. Soc. Rev. 38, 2178–2189 (2009).

    CAS  PubMed  Google Scholar 

  5. Moyano, A. & Rios, R . Asymmetric organocatalytic cyclization and cycloaddition reactions. Chem. Rev. 111, 4703–4832 (2011).

    CAS  PubMed  Google Scholar 

  6. Donslund, B. S., Johansen, T. K., Poulsen, P. H., Halskov, K. S. & Jørgensen, K. A. The diarylprolinol silyl ethers: ten years after. Angew. Chem. Int. Ed. 54, 13860–13874 (2015).

    CAS  Google Scholar 

  7. Harmata, M., Ghosh, S. K., Hong, X., Wacharasindhu, S. & Kirchhoefer, P. Asymmetric organocatalysis of 4+3 cycloaddition reactions. J. Am. Chem. Soc. 125, 2058–2059 (2003).

    CAS  PubMed  Google Scholar 

  8. Burns, N. Z., Witten, M. R. & Jacobsen, E. N. Dual catalysis in enantioselective oxidopyrylium-based [5+2] cycloadditions. J. Am. Chem. Soc. 123, 14578–14581 (2011).

    Google Scholar 

  9. Orue, A., Uria Reyes, U. E., Carrillo, L. & Vicario, J. L. Catalytic enantioselective [5+2] cycloaddition between oxidopyrylium ylides and enals under dienamine activation. Angew. Chem. Int. Ed. 54, 3043–3046 (2015).

    CAS  Google Scholar 

  10. Dell'Amico, L . et al. Exploring the vinylogous reactivity of cyclohexenylidene malononitriles: switchable regioselectivity in the organocatalytic asymmetric addition to enals giving highly enantioenriched carbabicyclic structures. J. Am. Chem. Soc. 136, 11107–11114 (2014).

    CAS  PubMed  Google Scholar 

  11. Guo, C., Sahoo, B., Daniliuc, C. G. & Glorius, F. N-heterocyclic carbene catalyzed switchable reactions of enals with azoalkenes: formal [4+3] and [4+1] annulations for the synthesis of 1,2-diazepines and pyrazoles. J. Am. Chem. Soc. 136, 17402–17405 (2014).

    CAS  PubMed  Google Scholar 

  12. Guo, C., Fleige, M., Janssen-Müller, D., Daniliuc, C. G. & Glorius, F . Switchable selectivity in an NHC-catalysed dearomatizing annulation reaction. Nat. Chem. 7, 842–847 (2015).

    CAS  PubMed  Google Scholar 

  13. Zhan, G. et al. Catalyst-controlled switch in chemo- and diastereoselectivities: annulations of Morita–Baylis–Hillman carbonates from isatins. Angew. Chem. Int. Ed. 55, 2147–2151 (2016).

    CAS  Google Scholar 

  14. Neuenschwander, M. in The Chemistry of Double-Bonded Functional Groups Supplement A (ed. Patai, S.) Vol. 2 1131–1268 (Wiley, 1989).

    Google Scholar 

  15. Barluenga, J., Martínez, S., Suárez-Sobrino, A. L. & Tomás, M. New reaction pathways for Fischer carbene complexes: [6+3] cycloaddition of chromium alkenyl carbene complexes with fulvenes. J. Am. Chem. Soc. 123, 11113–11114 (2001).

    CAS  PubMed  Google Scholar 

  16. Barluenga, J., Martínez, S., Suárez-Sobrino, A. L. & Tomás, M . The [2+1] and [4+3] cyclization reactions of fulvenes with Fischer carbene complexes: new access to annulated cyclopentanones. J. Am. Chem. Soc. 124, 5948–5949 (2002).

    CAS  PubMed  Google Scholar 

  17. Potowski, M., Antonchick, A. P. & Waldmann, H. Highly enantioselective catalytic [6+3] cycloadditions of azomethine ylides. Angew. Chem. Int. Ed. 51, 9512–9516 (2012).

    CAS  Google Scholar 

  18. He, Z.-L., Teng, H.-L. & Wang, C.-J. Fulvenes as effective dipolarophiles in copper(I)-catalyzed [6+3] cycloaddition of azomethine ylides: asymmetric construction of piperidine derivatives. Angew. Chem. Int. Ed. 52, 2934–2938 (2013).

    CAS  Google Scholar 

  19. Wu, T.-C. & Houk, K. N . Construction of linearly fused tricyclopentanoids by intramolecular [6+2] cycloadditions of fulvenes with enamines. J. Am. Chem. Soc. 107, 5308–5309 (1985).

    CAS  Google Scholar 

  20. Hayashi, Y . et al. Organocatalytic, enantioselective intramolecular [6+2] cycloaddition reaction for the formation of tricyclopentanoids and insight on its mechanism from a computational study. J. Am. Chem. Soc. 133, 20175–20185 (2011).

    CAS  PubMed  Google Scholar 

  21. Hong, B.-C. et al. Novel [6+2] cycloaddition of fulvenes with alkenes: a facile synthesis of the anislactone and hirsutane framework. Org. Lett. 4, 2249–2252 (2002).

    CAS  PubMed  Google Scholar 

  22. Li, J.-L., Liu, T.-Y. & Chen, Y.-C. Aminocatalytic asymmetric Diels–Alder reactions via HOMO activation. Acc. Chem. Res. 45, 1491–1500 (2012).

    CAS  PubMed  Google Scholar 

  23. Kumar, I., Ramaraju, P. & Mir, N. A . Asymmetric trienamine catalysis: new opportunities in amine catalysis. Org. Biomol. Chem. 11, 709–716 (2013).

    CAS  PubMed  Google Scholar 

  24. Arceo, E. & Melchiorre, P. Extending the aminocatalytic HOMO-raising activation strategy: where is the limit? Angew. Chem. Int. Ed. 51, 5290–5292 (2012).

    CAS  Google Scholar 

  25. Jiang, H., Albrecht, Ł. & Jørgensen, K. A . Aminocatalytic remote functionalization strategies. Chem. Sci. 4, 2287–2300 (2013).

    CAS  Google Scholar 

  26. Jurberg, I. D., Chatterjee, I., Tannert, R. & Melchiorre, P . When asymmetric aminocatalysis meets the vinylogy principle. Chem. Commun. 49, 4869–4883 (2013).

    CAS  Google Scholar 

  27. Jiang, K. & Chen, Y.-C. The development of asymmetric trienamine catalysis. Prog. Chem. 27, 137–145 (2015).

    CAS  Google Scholar 

  28. Takanami, T., Suda, K. & Ohmori, H . Utilization of PPh3-Ti(IV) reagents. An efficient α′-alkylidenation of cyclic enones. Tetrahedron Lett. 31, 677–680 (1990).

    CAS  Google Scholar 

  29. Melchiorre, P. Cinchona-based primary amine catalysis in the asymmetric functionalization of carbonyl compounds. Angew. Chem. Int. Ed. 51, 9748–9770 (2012).

    CAS  Google Scholar 

  30. Jiang, L. & Chen, Y.-C. Recent advances in asymmetric catalysis with cinchona alkaloid-based primary amines. Catal. Sci. Technol. 1, 354–365 (2011).

    CAS  Google Scholar 

  31. Halskov, K. S . et al. Cross-trienamines in asymmetric organocatalysis. J. Am. Chem. Soc. 134, 12943–12946 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dieckmann, A., Breugst, M. & Houk, K. N . Zwitterions and unobserved intermediates in organocatalytic Diels–Alder reactions of linear and cross-conjugated trienamines. J. Am. Chem. Soc. 135, 3237–3242 (2013).

    CAS  PubMed  Google Scholar 

  33. Lee, A., Michrowska, A., Sulzer-Mosse, S. & List, B. The catalytic asymmetric Knoevenagel condensation. Angew. Chem. Int. Ed. 50, 1707–1710 (2011).

    CAS  Google Scholar 

  34. Stiller, J., Kowalczyk, D., Jiang, H., Jørgensen, K. A. & Albrecht, Ł. Novel organocatalytic activation of unmodified Morita–Baylis–Hillman alcohols for the synthesis of bicyclic α-alkylidene-ketones. Chem. Eur. J. 20, 13108–13112 (2014).

    CAS  PubMed  Google Scholar 

  35. Kanta De, C. & Seidel, D. Catalytic enantioselective desymmetrization of meso-diamines: a dual small-molecule catalysis approach. J. Am. Chem. Soc. 133, 14538–14541 (2011).

    Google Scholar 

  36. Birrell, J. A., Desrosiers, J.-N. & Jacobsen, E. N. Enantioselective acylation of silyl ketene acetals through fluoride anion-binding catalysis. J. Am. Chem. Soc. 133, 13872–13875 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rahaman, H., Madarász, Á., Pápai, I. & Pihko, P. M. Dual hydrogen-bond/enamine catalysis enables a direct enantioselective three-component domino reaction. Angew. Chem. Int. Ed. 50, 6123–6127 (2011).

    CAS  Google Scholar 

  38. Aroyan, C. E. & Miller, S. J . Enantioselective Rauhut–Currier reactions promoted by protected cysteine. J. Am. Chem. Soc. 129, 256–257 (2007).

    CAS  PubMed  Google Scholar 

  39. Aroyan, C. E., Dermenci, A. & Miller, S. J . Development of a cysteine-catalyzed enantioselective Rauhut–Currier reaction. J. Org. Chem. 75, 5784–5796 (2010).

    CAS  PubMed  Google Scholar 

  40. Selig, P. S. & Miller, S. J. Ortho-acidic aromatic thiols as efficient catalysts of intramolecular Morita–Baylis–Hillman and Rauhut–Currier reactions. Tetrahedron Lett. 52, 2148–2151 (2011).

    CAS  Google Scholar 

  41. Mose, R., Jensen, M. E., Preegel, G. & Jørgensen, K. A. Direct access to multifunctional norcamphor scaffolds by asymmetric organocatalytic Diels–Alder reactions. Angew. Chem. Int. Ed. 54, 13630–13634 (2015).

    CAS  Google Scholar 

  42. Albrecht, Ł. et al. Asymmetric organocatalytic formal [2+2]-cycloadditions via bifunctional H-bond directing dienamine catalysis. J. Am. Chem. Soc. 134, 2543–2546 (2012).

    CAS  PubMed  Google Scholar 

  43. Talavera, G., Reyes, E., Vicario, J. L. & Carrillo, L. Cooperative dienamine/hydrogen-bonding catalysis: enantioselective formal [2+2] cycloaddition of enals with nitroalkenes. Angew. Chem. Int. Ed. 51, 4104–4107 (2012).

    CAS  Google Scholar 

  44. Xu, Y., Conner, M. L. & Brown, M. K. Cyclobutane and cyclobutene synthesis: catalytic enantioselective [2+2] cycloadditions. Angew. Chem. Int. Ed. 54, 11918–11928 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Natural Science Foundation of China (grant numbers 21125206, 21372160 and 21321061).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and Y.C.C conceived and designed the research. Z.Z., Z.X.W., Y.C.Z. and W.X. performed the research. Q.O. performed the DFT computational calculation study. Y.C.C., Q.O., W.D. and Z.Z. co-wrote the paper.

Corresponding authors

Correspondence to Qin Ouyang or Ying-Chun Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14020 kb)

Supplementary information

Crystallographic data for compound 3b. (CIF 326 kb)

Supplementary information

Crystallographic data for compound 4b. (CIF 643 kb)

Supplementary information

Crystallographic data for compound 9b. (CIF 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Wang, ZX., Zhou, YC. et al. Switchable regioselectivity in amine-catalysed asymmetric cycloadditions. Nature Chem 9, 590–594 (2017). https://doi.org/10.1038/nchem.2698

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2698

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing