Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoproteomic profiling and discovery of protein electrophiles in human cells

Abstract

Activity-based protein profiling (ABPP) serves as a chemical proteomic platform to discover and characterize functional amino acids in proteins on the basis of their enhanced reactivity towards small-molecule probes. This approach, to date, has mainly targeted nucleophilic functional groups, such as the side chains of serine and cysteine, using electrophilic probes. Here we show that ‘reverse-polarity’ (RP)-ABPP using clickable, nucleophilic hydrazine probes can capture and identify protein-bound electrophiles in cells. Using this approach, we demonstrate that the pyruvoyl cofactor of S-adenosyl-L-methionine decarboxylase (AMD1) is dynamically controlled by intracellular methionine concentrations. We also identify a heretofore unknown modification—an N-terminally bound glyoxylyl group—in the poorly characterized protein secernin-3. RP-ABPP thus provides a versatile method to monitor the metabolic regulation of electrophilic cofactors and discover novel types of electrophilic modifications on proteins in human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RP-ABPP with hydrazine probes in human cells.
Figure 2: Identification of protein targets of hydrazine probes.
Figure 3: Functional profiling of the pyruvoyl cofactor of AMD1 by hydrazine probes.
Figure 4: Identification of a hydrazine-reactive site in SCRN3.
Figure 5: Evidence supporting the structural assignment of an N-terminal glyoxylyl group in SCRN3.
Figure 6: Possible routes for N-terminal processing of SCRN3 in comparison to the established mechanisms of N-terminal maturation for other protein classes.

Similar content being viewed by others

References

  1. Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Jr Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).

    CAS  Google Scholar 

  2. Okeley, N. M. & van der Donk, W. A. Novel cofactors via post-translational modifications of enzyme active sites. Chem. Biol. 7, R159–R171 (2000).

    CAS  PubMed  Google Scholar 

  3. Olsen, J. V. & Mann, M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteomics 12, 3444–3452 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Devarie Baez, N. O., Reisz, J. A. & Furdui, C. M. Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radical Biol. Med. 80, 191–211 (2015).

    CAS  Google Scholar 

  5. Furdui, C. M. & Poole, L. B. Chemical approaches to detect and analyze protein sulfenic acids. Mass Spectrom. Rev. 33, 126–146 (2014).

    CAS  PubMed  Google Scholar 

  6. Chuh, K. N. & Pratt, M. R. Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Curr. Opin. Chem. Biol. 24, 27–37 (2015).

    CAS  PubMed  Google Scholar 

  7. Tate, E. W., Kalesh, K. A., Lanyon-Hogg, T., Storck, E. M. & Thinon, E. Global profiling of protein lipidation using chemical proteomic technologies. Curr. Opin. Chem. Biol. 24, 48–57 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, X. & Li, X. D. Chemical proteomics approaches to examine novel histone posttranslational modifications. Curr. Opin. Chem. Biol. 24, 80–90 (2015).

    CAS  PubMed  Google Scholar 

  9. Cravatt, B. F., Wright, A. T. & Kozarich, J. W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Shannon, D. A. & Weerapana, E. Covalent protein modification: the current landscape of residue-specific electrophiles. Curr. Opin. Chem. Biol. 24, 18–26 (2015).

    CAS  PubMed  Google Scholar 

  11. Klinman, J. P. & Bonnot, F. Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chem. Rev. 114, 4343–4365 (2014).

    CAS  PubMed  Google Scholar 

  12. Phillips, R. S. Chemistry and diversity of pyridoxal-5′-phosphate dependent enzymes. Biochim. Biophys. Acta 1854, 1167–1174 (2015).

    CAS  PubMed  Google Scholar 

  13. Zhang, H., Li, X. J., Martin, D. B. & Aebersold, R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol. 21, 660–666 (2003).

    CAS  PubMed  Google Scholar 

  14. Morgan, R. K. & Cohen, M. S. A clickable aminooxy probe for monitoring cellular ADP-ribosylation. ACS Chem. Biol. 10, 1778–1784 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta, V. & Carroll, K. S. Sulfenic acid chemistry, detection and cellular lifetime. Biochim. Biophys. Acta 1840, 847–875 (2014).

    CAS  PubMed  Google Scholar 

  16. Madian, A. G. & Regnier, F. E. Proteomic identification of carbonylated proteins and their oxidation sites. J. Proteome Res. 9, 3766–3780 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Alfaro, J. F. et al. Chemo-enzymatic detection of protein isoaspartate using protein isoaspartate methyltransferase and hydrazine trapping. Anal. Chem. 80, 3882–3889 (2008).

    CAS  PubMed  Google Scholar 

  18. Klaene, J. J., Ni, W., Alfaro, J. F. & Zhou, Z. S. Detection and quantitation of succinimide in intact protein via hydrazine trapping and chemical derivatization. J. Pharm. Sci. 103, 3033–3042 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41, 2596–2599 (2002).

    CAS  Google Scholar 

  20. Speers, A. E., Adam, G. C. & Cravatt, B. F. Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 125, 4686–4687 (2003).

    CAS  PubMed  Google Scholar 

  21. Binda, C. et al. Structural and mechanistic studies of arylalkylhydrazine inhibition of human monoamine oxidases A and B. Biochemistry 47, 5616–5625 (2008).

    CAS  PubMed  Google Scholar 

  22. Shantz, L. M., Stanley, B. A., Secrist, J. A. III & Pegg, A. E. Purification of human S-adenosylmethionine decarboxylase expressed in Escherichia coli and use of this protein to investigate the mechanism of inhibition by the irreversible inhibitors, 5′-deoxy-5′-[(3-hydrazinopropyl)methylamino]adenosine and 5′-([(Z)-4-amino-2-butenyl]methylamino)-5′-deoxyadenosine. Biochemistry 31, 6848–6855 (1992).

    CAS  PubMed  Google Scholar 

  23. Washburn, M. P., Wolters, D. & Yates, J. R. III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247 (2001).

    CAS  PubMed  Google Scholar 

  24. Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).

    CAS  PubMed  Google Scholar 

  25. Adibekian, A. et al. Click-generated triazole ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat. Chem. Biol. 7, 469–478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dalle-Donne, I. et al. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids. Free Radical Biol. Med. 46, 1411–1419 (2009).

    CAS  Google Scholar 

  27. Gupta, V., Paritala, H. & Carroll, K. S. Reactivity, selectivity and stability in sulfenic acid detection: a comparative study of nucleophilic and electropilic probes. Bioconjugate Chem. 27, 1411–1418 (2016).

    CAS  Google Scholar 

  28. Tolbert, W. D. et al. The structural basis for substrate specificity and inhibition of human S-adenosylmethionine decarboxylase. Biochemistry 40, 9484–9494 (2001).

    CAS  PubMed  Google Scholar 

  29. McCloskey, D. E. et al. New insights into the design of inhibitors of human S-adenosylmethionine decarboxylase: studies of adenine C8 substitution in structural analogues of S-adenosylmethionine. J. Med. Chem. 52, 1388–1407 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shantz, L. M., Holm, I., Jänne, O. A. & Pegg, A. E. Regulation of S-adenosylmethionine decarboxylase activity by alterations in the intracellular polyamine content. Biochem. J. 288, 511–518 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zinellu, A. et al. Plasma methionine determination by capillary electrophoresis-UV assay: application on patients affected by retinal venous occlusive disease. Anal. Biochem. 363, 91–96 (2007).

    CAS  PubMed  Google Scholar 

  32. Xiong, H., Stanley, B. A. & Pegg, A. E. Role of cysteine-82 in the catalytic mechanism of human S-adenosylmethionine decarboxylase. Biochemistry 38, 2462–2470 (1999).

    CAS  PubMed  Google Scholar 

  33. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Weerapana, E., Speers, A. E. & Cravatt, B. F. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)–a general method for mapping sites of probe modification in proteomes. Nat. Protoc. 2, 1414–1425 (2007).

    CAS  PubMed  Google Scholar 

  35. Pei, J. & Grishin, N. V. Peptidase family U34 belongs to the superfamily of N-terminal nucleophile hydrolases. Protein. Sci. 12, 1131–1135 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brannigan, J. A. et al. A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378, 416–419 (1995).

    CAS  PubMed  Google Scholar 

  37. Aronson, N. N. Jr Lysosomal glycosylasparaginase: a member of a family of amidases that employ a processed N-terminal threonine, serine or cysteine as a combined base-nucleophile catalyst. Glycobiology 6, 669–675 (1996).

    CAS  PubMed  Google Scholar 

  38. Dirksen, A., Dirksen, S., Hackeng, T. M. & Dawson, P. E. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J. Am. Chem. Soc. 128, 15602–15603 (2006).

    CAS  PubMed  Google Scholar 

  39. Dirksen, A. & Dawson, P. E. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug. Chem. 19, 2543–2548 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yerlikaya, A. & Stanley, B. A. S-adenosylmethionine decarboxylase degradation by the 26S proteasome is accelerated by substrate-mediated transamination. J. Biol. Chem. 279, 12469–12478 (2004).

    CAS  PubMed  Google Scholar 

  41. Dall, E., Fegg, J. C., Briza, P. & Brandstetter, H. Structure and mechanism of an aspartimide-dependent peptide ligase in human legumain. Angew. Chem. Int. Ed. 54, 2917–2921 (2015).

    CAS  Google Scholar 

  42. Casero, R. A. Jr & Marton, L. J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Discov. 6, 373–390 (2007).

    CAS  PubMed  Google Scholar 

  43. Jaramillo, M. C. & Zhang, D. D. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27, 2179–2191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Blennow, K., Mattsson, N., Schöll, M., Hansson, O. & Zetterberg, H. Amyloid biomarkers in Alzheimer's disease. Trends Pharmacol. Sci. 36, 297–309 (2015).

    CAS  PubMed  Google Scholar 

  45. Yang, J. et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 490, 267–272 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Buckingham, J. The chemistry of arylhydrazones. Q. Rev. Chem. Soc. 23, 37–56 (1969).

    CAS  Google Scholar 

  47. Huizinga, E. G. et al. Active site structure of methylamine dehydrogenase: hydrazines identify C6 as the reactive site of the tryptophan-derived quinone cofactor. Biochemistry 31, 9789–9795 (1992).

    CAS  PubMed  Google Scholar 

  48. Appel, M. J. & Bertozzi, C. R. Formylglycine, a post-translationally generated residue with unique catalytic capabilities and biotechnology applications. ACS Chem. Biol. 10, 72–84 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, Q., Buckley, D., Guan, C. & Guo, H. C. Structural insights into the mechanism of intramolecular proteolysis. Cell 98, 651–661 (1999).

    CAS  PubMed  Google Scholar 

  50. Kabisch, U. C. et al. Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein. J. Biol. Chem. 274, 8445–8454 (1999).

    CAS  PubMed  Google Scholar 

  51. Andreesen, J. R. Glycine reductase mechanism. Curr. Opin. Chem. Biol. 8, 454–461 (2004).

    CAS  PubMed  Google Scholar 

  52. Mihara, H. & Esaki, N. Bacterial cysteine desulfurases: their function and mechanisms. Appl. Microbiol. Biotechnol. 60, 12–23 (2002).

    CAS  PubMed  Google Scholar 

  53. Scheck, R. A., Dedeo, M. T., Iavarone, A. T. & Francis, M. B. Optimization of a biomimetic transamination reaction. J. Am. Chem. Soc. 130, 11762–11770 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Steven Ealick and Leslie Kinsland for the AdoMetDC bacterial expression plasmid, Keriann Backus for the cleavable tags, Gonzalo González-Páez and Dennis Wolan for TEV protease, Melissa Dix and Jim Moresco for instrument assistance, Armand Cognetta and Kenneth Lum for software and data assistance, Liron Bar-Peled and Stephan Hacker for plasmids and Silvia Ortega-Gutiérrez for helpful discussions. This work was supported by the National Institutes of Health Grants CA132630 (B.F.C.), P41 GM103533 and U54 GM114833-02 (J.R.Y.), an NSF Graduate Research Fellowship DGE-1346837 (E.J.O.) and a Helen Hay Whitney Postdoctoral Fellowship sponsored by Merck (M.L.M).

Author information

Authors and Affiliations

Authors

Contributions

M.L.M and B.F.C. conceived the project, designed experiments and composed the manuscript. M.L.M performed all experiments. L.H. wrote software and J.R.Y. provided advice. M.L.M., L.H., B.E.C. and B.F.C. analysed data. M.L.M., E.J.O. and P.E.D. designed peptide standards. M.L.M. and E.J.O. synthesized peptides. M.L.M. and B.D.H. synthesized probes.

Corresponding authors

Correspondence to Megan L. Matthews or Benjamin F. Cravatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6324 kb)

Supplementary information

Supplementary information (XLSX 9547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, M., He, L., Horning, B. et al. Chemoproteomic profiling and discovery of protein electrophiles in human cells. Nature Chem 9, 234–243 (2017). https://doi.org/10.1038/nchem.2645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2645

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research