Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp3)–H amination

Abstract

C–H bond oxidation reactions underscore the existing paradigm wherein high reactivity and high selectivity are inversely correlated. The development of catalysts capable of oxidizing strong aliphatic C(sp3)–H bonds while displaying chemoselectivity (that is, tolerance of more oxidizable functionality) remains an unsolved problem. Here, we describe a catalyst, manganese tert-butylphthalocyanine [Mn(tBuPc)], that is an outlier to the reactivity–selectivity paradigm. It is unique in its capacity to functionalize all types of C(sp3)–H bond intramolecularly, while displaying excellent chemoselectivity in the presence of π functionality. Mechanistic studies indicate that [Mn(tBuPc)] transfers bound nitrenes to C(sp3)–H bonds via a pathway that lies between concerted C–H insertion, observed with reactive noble metals such as rhodium, and stepwise radical C–H abstraction/rebound, as observed with chemoselective base metals such as iron. Rather than achieving a blending of effects, [Mn(tBuPc)] aminates even 1° aliphatic and propargylic C–H bonds, demonstrating reactivity and selectivity unusual for previously known catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The C–H oxidation reactivity/selectivity paradigm.
Figure 2: Mechanistic studies of manganese and iron C–H amination catalysts.
Figure 3: Late-stage diversification of complex molecules via [Mn(tBuPc)]-catalysed C–H amination.

Similar content being viewed by others

References

  1. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res. 45, 911–922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. White, M. C. Adding aliphatic C–H bond oxidations to synthesis. Science 335, 807–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Que, L. Jr. The road to non-heme oxoferryls and beyond. Acc. Chem. Res. 40, 493–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Nam, W., Lee, Y. & Fukuzumi, S. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)–oxo complexes. Acc. Chem. Res. 47, 1146–1154 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, M. S. & White, M. C. A predictable selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Gormisky, P. E. & White, M. C. Catalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivity. J. Am. Chem. Soc. 135, 14052–14055 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Jeffrey, J. L. & Sarpong, R. Intramolecular C(sp3)–H amination. Chem. Sci. 4, 4092–4106 (2013).

    Article  CAS  Google Scholar 

  8. Lebel, H. in Catalyzed Carbon–Heteroatom Bond Formation (ed. Yudin, A. K.) 137–155 (Wiley-VCH, 2011).

    Google Scholar 

  9. Collet, F., Dodd, R. H. & Dauban, P. Catalytic C–H amination: recent progress and future directions. Chem. Commun. 5061–5074 (2009).

  10. Che, C. M., Lo, V. K. Y., Zhou, C. Y. & Huang, J. S. Selective functionalization of saturated C–H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 40, 1950–1975 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Paradine, S. M. & White, M. C. Iron-catalyzed intramolecular allylic C–H amination. J. Am. Chem. Soc. 134, 2036–2039 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Hennessy, E. T. & Betley, T. A. Complex N-heterocycle synthesis via iron-catalyzed, direct C–H bond amination. Science 340, 591–595 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Hennessy, E. T., Liu, R. Y., Iovan, D. A., Duncan, R. A. & Betley, T. A. Iron-mediated intermolecular N-group transfer chemistry with olefinic substrates. Chem. Sci. 5, 1526–1532 (2014).

    Article  CAS  Google Scholar 

  14. Liu, Y. et al. Nonheme iron-mediated amination of C(sp3)–H bonds. Quinquepyridine-supported iron-imide/nitrene intermediates by experimental studies and DFT calculations. J. Am. Chem. Soc. 135, 7194–7204 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Harvey, M. E., Musaev, D. G. & Du Bois, J. A diruthenium catalyst for selective, intramolecular allylic C–H amination: reaction development and mechanistic insight gained through experiment and theory. J. Am. Chem. Soc. 133, 17207–17216 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki, K., Oldenburg, P. D. & Que, L. Jr. Iron-catalyzed asymmetric olefin cis-dihydroxylation with 97% enantiomeric excess. Angew. Chem. Int. Ed. 47, 1887–1889 (2008).

    Article  CAS  Google Scholar 

  17. Friedfel, M. R. et al. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Science 342, 1076–1080 (2013).

    Article  CAS  Google Scholar 

  18. Jagadeesh, R. V. et al. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 342, 1073–1076 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Zuo, W., Lough, A. J., Young, F. L. & Morris, R. H. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science 342, 1080–1083 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Nappa, M. J. & McKinney, R. J. Selectivity control by axial ligand modification in manganese porphyrin catalyzed oxidations. Inorg. Chem. 27, 3740–3745 (1988).

    Article  CAS  Google Scholar 

  21. Zalatan, D. N. & Du Bois, J. Oxidative cyclization of sulfamate esters using NaOCl—a metal-mediated Hoffman–Löffler–Freytag reaction. Synlett. 143–146 (2009).

  22. Groves, J. T., Kruper, W. J. & Haushalter, R. C. Hydrocarbon oxidations with oxometalloporphinates. Isolation and reactions of a (porphinato)manganese(V) complex. J. Am. Chem. Soc. 102, 6375–6377 (1980).

    Article  CAS  Google Scholar 

  23. Cook, B. R., Reinert, T. J. & Suslick, K. S. Shape-selective alkane hydroxylation by metalloporphyrin catalysts. J. Am. Chem. Soc. 108, 7281–7286 (1986).

    Article  CAS  Google Scholar 

  24. Hill, C. J. & Hollander, F. J. Structural characterization of a complex of manganese(V) nitrido[tetrakis(p-methoxyphenyl)porphinato]manganese(V). J. Am. Chem. Soc. 104, 7318–7319 (1982).

    Article  CAS  Google Scholar 

  25. Mehn, M. P. & Peters, J. C. Mid- to high-valent imido and nitrido complexes of iron. J. Inorg. Biochem. 100, 634–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Jensen, M. P., Mehn, M. P. & Que, L. Jr. Intramolecular aromatic amination through iron-mediated nitrene transfer. Angew. Chem. Int. Ed. 42, 4357–4360 (2003).

    Article  CAS  Google Scholar 

  27. Luo, Y.-R. & Cheng, J.-P. in CRC Handbook of Chemistry & Physics 94th edn (ed. Haynes, W. M.) 9–65 (CRC, 2013).

    Google Scholar 

  28. Breslow, R. & Gellman, S. H. Intramolecular nitrene C–H insertions mediated by transition-metal complexes as nitrogen analogues of cytochrome P-450 reactions. J. Am. Chem. Soc. 105, 6728–6729 (1983).

    Article  CAS  Google Scholar 

  29. Lever, A. B. P. & Wilshire, J. P. Redox potentials of metal phthalocyanines in non-aqueous media. Can. J. Chem. 54, 2514–2516 (1976).

    Article  CAS  Google Scholar 

  30. Löbbert, G. in Ullmann’s Encyclopedia of Industrial Chemistry Vol. 27 (ed. Löbbert, G.) 181–213 (Wiley-VCH, 2012).

    Google Scholar 

  31. Fiori, K. W., Espino, C. G., Brodsky, B. H. & Du Bois, J. A mechanistic analysis of the Rh-catalyzed intramolecular C–H amination reaction. Tetrahedron. 65, 3042–3051 (2009).

    Article  CAS  Google Scholar 

  32. Huard, K. & Lebel, H. Rhodium-catalyzed amination reaction from N-tosyloxycarbamates. Chem. Eur. J. 14, 6222–6230 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Reed, S. A., Mazzotti, A. R. & White, M. C. A catalytic, Bronsted base strategy for intermolecular allylic C–H amination. J. Am. Chem. Soc. 131, 11701–11706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang, C. et al. Toward a synthetically useful stereoselective C–H amination of hydrocarbons. J. Am. Chem. Soc. 130, 343–350 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Grigg, D. R., Rigoli, J. W., Pearce, S. D. & Schomaker, J. M. Synthesis of propargylic and allenic carbamates via the C–H amination of alkynes. Org. Lett. 14, 280–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Thornton, A. R. & Blakey, S. B. Catalytic metallonitrene/alkyne metathesis: a powerful cascade process for the synthesis of nitrogen-containing molecules. J. Am. Chem. Soc. 130, 5020–5021 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Fleming, J. J., McReynolds, M. D. & Du Bois, J. (+)-Saxitoxin: a first and second generation stereoselective synthesis. J. Am. Chem. Soc. 129, 9964–9975 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Sharma, A. & Hartwig, J. H. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Michaudel, Q., Thevenet, D. & Baran, P. S. Intermolecular Ritter-type C–H amination of unactivated sp3 carbons. J. Am. Chem. Soc. 134, 2547–2550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhong, H. A., Labinger, J. A. & Bercaw, J. E. C–H bond activation by cationic platinum(II) complexes: ligand electronic and steric effects. J. Am. Chem. Soc. 124, 1378–1399 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Meléndez, R. E. & Lubell, W. D. Synthesis and reactivity of cyclic sulfamidites and sulfamidates. Tetrahedron 59, 2581–2616 (2003).

    Article  CAS  Google Scholar 

  42. Kang, T., Kim, Y., Lee, D., Wang, Z. & Chang, S. Iridium-catalyzed intermolecular amidation of sp3 C–H bonds: late-stage functionalization of an unactivated methyl group. J. Am. Chem. Soc. 136, 4141–4144 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Drag-Zalesinska, M. et al. Esters of betulin and betulinic acid with amino acids have improved water solubility and are selectively cytotoxic toward cancer cells. Bioorg. Med. Chem. Lett. 19, 4814–4817 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Greenwood, N. N. & Earnshaw, A. Chemistry of the Elements 2nd edn (Elsevier, 1997).

    Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the NIH/NIGMS (GM112492). S.M.P. was a NSF Graduate Research Fellow, J.R.G is a NSF Graduate Research Fellow and a Springborn Graduate Fellow, J.P.Z. is a R.C. Fuson graduate fellow, and S.M.M. is a UIUC Summer Undergraduate Research Fellow. The authors thank Bristol-Myers-Squibb for generous support with an unrestricted ‘Freedom to Discover’ grant to M.C.W. and acknowledge J.M. Howell, J.R. Clark and C.C. Pattillo for checking our experimental procedure. The authors thank J. Bertke and D. Gray for crystallographic analysis of compound 56, L. Zhu for assistance with NMR data analysis, and D. Loudermilk for creative graphic assistance.

Author information

Authors and Affiliations

Authors

Contributions

S.M.P., J.R.G., J.P.Z., A.L.P. and S.M.M. conducted the experiments and analysed the data. S.M.P., J.R.G. and M.C.W. conceived and designed the project, analysed the data and prepared the manuscript.

Corresponding author

Correspondence to M. Christina White.

Ethics declarations

Competing interests

The University of Illinois has filed a patent application on the [Mn(tBuPc)] catalyst for general C–H functionalizations. The [Mn(tBuPc)] catalyst (prod # 799688) will be offered by Aldrich through a licence from the University of Illinois.

Supplementary information

Supplementary information

Supplementary information (PDF 9159 kb)

Supplementary information

Crystallographic data for compound 56 (CIF 2960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paradine, S., Griffin, J., Zhao, J. et al. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp3)–H amination. Nature Chem 7, 987–994 (2015). https://doi.org/10.1038/nchem.2366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing