Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Polyglycylation domain of β-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena

Abstract

Polyglycylation occurs through the post-translational addition of a polyglycine peptide to the γ-carboxyl group of glutamic acids near the C terminus of α- and β-tubulin1, and has been found only in cells with axonemes, from protists to humans2,3. In Tetrahymena thermophila, multiple sites of polyglycylation on α-tubulin are dispensable. By contrast, mutating similar sites on β-tubulin has site-specific effects, affecting cell motility and cytokinesis, or resulting in cell death4. Here, we address the lethality of a polyglycylation deficiency in T. thermophila using heterokaryons5. Cells with a lethal mutation in the polyglycylation domain of β-tubulin assembled axonemes that lack the central pair, B-subfibres and the transitional zone of outer microtubules (MTs). Furthermore, an arrest in cytokinesis occurred, and was associated with incomplete severing of cortical MTs positioned near the cleavage furrow. Thus, tubulin polyglycylation is required for the maintenance of some stable microtubular organelles that are all known to be polyglycylated in vivo, but its effects on MTs appear to be organelle-specific.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Course of cytokinesis in wild-type and mutant cells.
Figure 2: Ultrastructure of wild-type and mutant cilia.
Figure 3: Immunofluorescence images of wild-type, nondividing cells.
Figure 4: Immunofluorescence images of mutant cells after phenotype induction and arrest in cytokinesis.

Similar content being viewed by others

References

  1. Redeker, V. et al. Science 266, 1688–1691 (1994).

    Article  CAS  Google Scholar 

  2. Adoutte, A., Claisse, M., Maunoury, R. & Beisson, J. J. Mol. Evol. 22, 220–229 (1985).

    Article  CAS  Google Scholar 

  3. Bré, M.-H. et al. J. Cell Sci. 109, 727–738 (1996).

    PubMed  Google Scholar 

  4. Xia, L. et al. J.Cell Biol. 149, 1097–1106 (2000).

    Article  CAS  Google Scholar 

  5. Hai, B., Gaertig, J. & Gorovsky, M. A. Methods Cell Biol. 62, 513–531 (1999).

    Article  Google Scholar 

  6. Hai, B. & Gorovsky, M. A. Proc. Natl Acad. Sci. USA 94, 1310–1315 (1997).

    Article  CAS  Google Scholar 

  7. Gaertig, J., Thatcher, T. H., McGrath, K. E., Callahan, R. C. & Gorovsky, M. A. Cell Motil. Cytoskeleton 25, 243–253 (1993).

    Article  CAS  Google Scholar 

  8. Smith, E. F. & Lefebvre, P. A. Cell Motil. Cytoskeleton 38, 1–8 (1997).

    Article  CAS  Google Scholar 

  9. Sturgess, J. M., Chao, J. & Turner, J. A. P. N. Engl. J. Med. 303, 318–322 (1980).

    Article  CAS  Google Scholar 

  10. Wheatley, D. N. The Centriole: A Central Enigma of Cell Biology (Elsevier Biomedical Press, Amsterdam, 1982).

    Google Scholar 

  11. Errabolu, R., Sanders, M. A. & Salisbury, J. L. J. Cell Sci. 107, 9–16 (1994).

    CAS  PubMed  Google Scholar 

  12. Jerka Dziadosz, M. et al. Dev. Biol. 169, 644–661 (1995).

    Article  CAS  Google Scholar 

  13. Frankel, J. in Cell Polarity (ed. Drubin, D. G.) (Oxford University Press, 2001).

    Google Scholar 

  14. Raff, E. C., Hutchens, J. A., Hoyle, H. D., Nielsen, M. G. & Turner, F. R. Curr. Biol. 10, 1391–1394 (2000).

    Article  CAS  Google Scholar 

  15. Bressac, C. et al. Eur. J. Cell Biol. 67, 346–355 (1995).

    CAS  PubMed  Google Scholar 

  16. Tilney, L. G. & Gibbins, J. R. Protoplasma 65, 167–179 (1968).

    Article  CAS  Google Scholar 

  17. Stargell, L. A., Heruth, D. P., Gaertig, J. & Gorovsky, M. A. Mol. Cell. Biol. 12, 1443–1450 (1992).

    Article  CAS  Google Scholar 

  18. Behnke, O. & Forer, A. J. Cell Sci. 2, 169–172 (1967).

    CAS  PubMed  Google Scholar 

  19. Gibbons, I. R. Arch. Biol. 76, 317–352 (1965).

    CAS  Google Scholar 

  20. Quarmby, L. J. Cell Sci. 113, 2821–2827 (2000).

    CAS  PubMed  Google Scholar 

  21. Brown, J. M., Hardin, C. & Gaertig, J. Int. Cell Biol. Rep. 23, 841–848 (1999).

    Article  CAS  Google Scholar 

  22. Brown, J. M., Marsala, C., Kosoy, R. & Gaertig, J. Mol. Biol. Cell 10, 3081–3096 (1999).

    Article  CAS  Google Scholar 

  23. Gaertig, J., Gu, L., Hai, B. & Gorovsky, M. A. Nucleic Acids Res. 22, 5391–5398 (1994).

    Article  CAS  Google Scholar 

  24. Cassidy-Hanley, D. et al. Genetics 146, 135–147 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rasmussen, L. & Orias, E. Science 190, 464–465 (1975).

    Article  Google Scholar 

  26. Williams, N. E., Honts, J. E. & Kaczanowska, J. Development 109, 935–942 (1990).

    CAS  PubMed  Google Scholar 

  27. Gaertig, J. et al. J. Cell Biol. 129, 1301–1310 (1995).

    Article  CAS  Google Scholar 

  28. Levilliers, N., Fleury, A. & Hill, A. M. J. Cell Sci. 108, 3013–3028 (1995).

    CAS  PubMed  Google Scholar 

  29. Ledizet, M. & Piperno, G. Methods Enzymol. 196, 264–274 (1991).

    Article  CAS  Google Scholar 

  30. Calzone, F. J. & Gorovsky, M. A. Exp. Cell Res. 140, 474–476 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institutes of Health grant GM 54017 and an American Cancer Society grant RPG-99-245-01-CSM. We are grateful to the staff of the Center for Advanced Ultrastructural Research at the University of Georgia for training R.T. and for extensive technical assistance. We thank J. Frankel and J. Rosenbaum for numerous comments and stimulating ideas. We also thank M. Gorovsky, M. Jerka-Dziadosz, N. Williams and J. Lauderdale for critical reading of the manuscript, J. Salisbury for the 20H5 antibody, G. Piperno for the 6-11 B-1 antibody, and M.-H. Bré and N. Levilliers for the AXO49 antibodies. The 12G10 monoclonal antibody was produced by E.M. Nelsen and J. Frankel, and will be available from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa Department of Biological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Gaertig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thazhath, R., Liu, C. & Gaertig, J. Polyglycylation domain of β-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena. Nat Cell Biol 4, 256–259 (2002). https://doi.org/10.1038/ncb764

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing