Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequential Notch activation regulates ventricular chamber development

Abstract

Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4–Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dll4–Notch1 signalling abrogation disrupts trabeculation and chamber-gene expression.
Figure 2: Myocardial Jag1 inactivation disrupts chamber maturation and leads to cardiomyopathy and systolic dysfunction.
Figure 3: Jag1 gene profiling and validation.
Figure 4: Myocardial Jag2, together with Jag1, is required for ventricular maturation and compaction.
Figure 5: MFng modulates Notch selectivity towards its ligands and systemic Fng abrogation disrupts coronary vessel development.
Figure 6: Forced MFng expression in the endocardium disrupts chamber development.
Figure 7: Comparative expression profiling of Jag2flox;cTnT-Cre, Jag1flox;cTnT-Cre, Jag1flox;Jag2flox;cTnT-Cre, MFngGOF;Tie2-Cre (MFngtg;Tie2-Cre) and Mib1flox;cTnT-Cre mutants.
Figure 8: Sequential Notch ligand–receptor activation during ventricular chamber development.

Similar content being viewed by others

References

  1. Sedmera, D., Pexieder, T., Vuillemin, M., Thompson, R. P. & Anderson, R. H. Developmental patterning of the myocardium. Anat. Rec. 258, 319–337 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Moorman, A. F. & Christoffels, V. M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 83, 1223–1267 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Tevosian, S. G. et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101, 729–739 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, B. et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151, 1083–1096 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wessels, A. & Sedmera, D. Developmental anatomy of the heart: a tale of mice and man. Physiol. Genomics 15, 165–176 (2003).

    Article  PubMed  Google Scholar 

  6. Ritter, M. et al. Isolated noncompaction of the myocardium in adults. Mayo Clin. Proc. 72, 26–31 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Towbin, J. A. Left ventricular noncompaction: a new form of heart failure. Heart Fail. Clin. 6, 453–469 (2010).

    Article  PubMed  Google Scholar 

  8. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    Article  PubMed  Google Scholar 

  9. Captur, G. & Nihoyannopoulos, P. Left ventricular non-compaction: genetic heterogeneity, diagnosis and clinical course. Int. J. Cardiol. 140, 145–153 (2010).

    Article  PubMed  Google Scholar 

  10. Sarma, R. J., Chana, A. & Elkayam, U. Left ventricular noncompaction. Prog. Cardiovasc. Dis. 52, 264–273 (2010).

    Article  PubMed  Google Scholar 

  11. Arbustini, E., Weidemann, F. & Hall, J. L. Left ventricular noncompaction: a distinct cardiomyopathy or a trait shared by different cardiac diseases? J. Am. Coll. Cardiol. 64, 1840–1850 (2014).

    Article  PubMed  Google Scholar 

  12. Grego-Bessa, J. et al. Notch signaling is essential for ventricular chamber development. Dev. Cell 12, 415–429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 67–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luxan, G. et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19, 193–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Nowotschin, S., Xenopoulos, P., Schrode, N. & Hadjantonakis, A. K. A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Dev. Biol. 13 http://dx.doi.org/10.1186/1471-213X-13-15 (2013).

  17. Koch, U. et al. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 205, 2515–2523 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kisanuki, Y. Y. et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Bjarnadottir, T. K., Fredriksson, R. & Schioth, H. B. The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol. Life Sci. 64, 2104–2119 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Waller-Evans, H. et al. The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS ONE 5, e14047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Patra, C. et al. Organ-specific function of adhesion G protein-coupled receptor GPR126 is domain-dependent. Proc. Natl Acad. Sci. USA 110, 16898–16903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munch, J., Gonzalez-Rajal, A. & de la Pompa, J. L. Notch regulates blastema proliferation and prevents differentiation during adult zebrafish fin regeneration. Development 140, 1402–1411 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Jiao, K. et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17, 2362–2367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Captur, G. et al. Abnormal cardiac formation in hypertrophic cardiomyopathy: fractal analysis of trabeculae and preclinical gene expression. Circ. Cardiovasc. Genet. 7, 241–248 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Ivins, S. et al. The CXCL12/CXCR4 axis plays a critical role in coronary artery development. Dev. Cell 33, 455–468 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cavallero, S. et al. CXCL12 signaling is essential for maturation of the ventricular coronary endothelial plexus and establishment of functional coronary circulation. Dev. Cell 33, 469–477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian, X., Pu, W. T. & Zhou, B. Cellular origin and developmental program of coronary angiogenesis. Circ. Res. 116, 515–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, L. T. et al. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol. Biol. Cell 16, 927–942 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. McKenzie, G. J. et al. Nuclear Ca2+ and CaM kinase IV specify hormonal- and Notch-responsiveness. J. Neurochem. 93, 171–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Timmerman, L. A. et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moran, J. L. et al. Manic fringe is not required for embryonic development, and fringe family members do not exhibit redundant functions in the axial skeleton, limb, or hindbrain. Dev. Dynam. 238, 1803–1812 (2009).

    Article  CAS  Google Scholar 

  35. Luna-Zurita, L. et al. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J. Clin. Invest. 120, 3493–3507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fischer, A., Schumacher, N., Maier, M., Sendtner, M. & Gessler, M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 18, 901–911 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watanabe, T., Koibuchi, N. & Chin, M. T. Transcription factor CHF1/Hey2 regulates coronary vascular maturation. Mech. Dev. 127, 418–427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leask, A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ. Res. 116, 1269–1276 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Hinz, B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 47, 54–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Epstein, J. A., Aghajanian, H. & Singh, M. K. Semaphorin signaling in cardiovascular development. Cell Metab. 21, 163–173 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Toyofuku, T. et al. Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling. Nat. Cell Biol. 6, 1204–1211 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Dirkx, E. et al. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat. Cell Biol. 15, 1282–1293 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Hertig, C. M., Kubalak, S. W., Wang, Y. & Chien, K. R. Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis. J. Biol. Chem. 274, 37362–37369 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Kelly, R. G., Buckingham, M. E. & Moorman, A. F. Heart fields and cardiac morphogenesis. Cold Spring Harb. Perspect. Med. 4, a015750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Conlon, R. A., Reaume, A. G. & Rossant, J. Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545 (1995).

    CAS  PubMed  Google Scholar 

  46. Oka, C. et al. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121, 3291–3301 (1995).

    CAS  PubMed  Google Scholar 

  47. Mancini, S. J. et al. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105, 2340–2342 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, J., Krebs, L. T. & Gridley, T. Generation of mice with a conditional null allele of the Jagged2 gene. Genesis 48, 390–393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Koo, B. K. et al. An obligatory role of mind bomb-1 in notch signaling of mammalian development. PLoS ONE 2, e1221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, C., Li, Q., Lim, C. H., Qiu, X. & Jiang, Y. J. The characterization of zebrafish antimorphic mib alleles reveals that Mib and Mind bomb-2 (Mib2) function redundantly. Dev. Biol. 305, 14–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. de la Pompa, J. L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  53. Kanzler, B., Kuschert, S. J., Liu, Y. H. & Mallo, M. Hoxa-2 restricts the chondrogenic domain and inhibits bone formation during development of the branchial area. Development 125, 2587–2597 (1998).

    CAS  PubMed  Google Scholar 

  54. Del Monte, G., Grego-Bessa, J., Gonzalez-Rajal, A., Bolos, V. & de la Pompa, J. L. Monitoring Notch1 activity in development: evidence for a feedback regulatory loop. Dev. Dynam. 236, 2594–2614 (2007).

    Article  CAS  Google Scholar 

  55. Del Monte, G. et al. Differential notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ. Res. 108, 824–836 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, J. et al. Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovasc. Res. 96, 276–285 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Chen, H. et al. Analysis of ventricular hypertrabeculation and noncompaction using genetically engineered mouse models. Pediatr. Cardiol. 30, 626–634 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Soufan, A. T. et al. Regionalized sequence of myocardial cell growth and proliferation characterizes early chamber formation. Circ. Res. 99, 545–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. de Boer, B. A. et al. The interactive presentation of 3D information obtained from reconstructed datasets and 3D placement of single histological sections with the 3D portable document format. Development 138, 159–167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Esteban, V. et al. Regulator of calcineurin 1 mediates pathological vascular wall remodeling. J. Exp. Med. 208, 2125–2139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB J. 17, 10–12 (2011).

    Article  Google Scholar 

  62. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12 http://dx.doi.org/10.1186/1471-2105-12-323 (2011).

  63. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  64. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

  65. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Sturn, A., Quackenbush, J. & Trajanoski, Z. Genesis: cluster analysis of microarray data. Bioinformatics 18, 207–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Walter, W., Sanchez-Cabo, F. & Ricote, M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31, 2912–2914 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cruz-Adalia, A. et al. CD69 limits the severity of cardiomyopathy after autoimmune myocarditis. Circulation 122, 1396–1404 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. van de Weijer, T. et al. Geometrical models for cardiac MRI in rodents: comparison of quantification of left ventricular volumes and function by various geometrical models with a full-volume MRI data set in rodents. Am. J. Physiol. Heart Circ. Physiol. 302, H709–H715 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Fukushima (Osaka U., Japan) for help with the generation of the R26-MFng targeting vector, RIKEN CDB (Japan) for producing the chimaeric mice, the CNIC Genomics Unit for RNA-seq, the CNIC Advance Imaging Unit for CMRI analysis, B. Zhou (Albert Einstein College, NYC, USA) for the NFATc1-Cre driver line, A. Martín-Pendas (CSIC, Salamanca, Spain), P. Muñoz-Canoves (UPF, Barcelona, Spain) and J. M. Pérez-Pomares (Málaga U., Spain) for critical reading of the manuscript and S. Bartlett (CNIC) and K. McCreath for English editing. Funds were from grants SAF2013-45543-R, RD12/0042/0005 (RIC) and RD12/0019/0003 (TERCEL) from the Spanish Ministry of Economy and Competitiveness (MINECO), FP7-ITN 215761 (NotchIT) and 28600 (CardioNeT) from the EU and a grant from the BBVA Foundation for Research in Biomedicine (2014), all to J.L.d.l.P. G.D’A. holds a PhD fellowship linked to grant FP7-ITN 215761 (NotchIT). The MINECO and the Pro-CNIC Foundation support the CNIC.

Author information

Authors and Affiliations

Authors

Contributions

G.D’A., G.L., G.d.M.-N., B.M.-P. and M.S.B. performed experiments. C.T., W.W. and F.M. analysed the RNA-seq data, A.-K.H., A.U. and S.C. provided the CBF:H2B-Venus reporter, the MFng transgenic line and the M−/−;L−/−;R−/− embryos. R.B. advised on the Fng experiments and L.J.J.-B. evaluated ultrasonography and CMRI. J.L.d.l.P. designed experiments, reviewed the data and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to José Luis de la Pompa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1

CBF:H2B-Venus activity in chamber endocardium (a) and Dll4 and Jag1 activate Notch during chamber development (bh ). (a) Two-photon whole-mount images of the left ventricle of E9.5 CBF:H2B-Venus, CBF:H2B-Venus;Notch1KO and CBF:H2B-Venus;RbpjKO embryos. Arrowheads indicate endocardial Venus expression in WT mice and abrogated expression in Notch1KO and RbpjKO embryos. (b) Images showing rear views of Amira 3D reconstructions of Dll4, Jag1 and N1ICD expression in the E9.5 WT heart. Atrioventricular canal region (avc) mesenchyme (yellow) does not express N1ICD. lv, left ventricle; rv right ventricle. (c,c ) Dll4 (green), SMA (red), and Venus (grey) immunostaining in E12.5 WT CBF:H2B-Venus ventricles. Venus+ cells (c , arrowheads) distribute throughout the endocardium, similarly to Dll4 (arrows). (d,d ) Jag1 (green), SMA (red), and Venus (grey) immunostaining in E12.5 WT CBF:H2B-Venus ventricles. In cd nuclei are counterstained with DAPI. Scale bar, 50 μm. (eh ) E15.5 WT ventricles. (e,e ) ISH. Dll4 is transcribed in coronary vessel endothelium (e , white arrowheads) and some endocardial cells (black arrowhead). (fh ) Immunostainings. (f,f ) Jag1 is expressed in trabecular myocardium (f , arrow) and coronary vessels (f , arrowhead). (g,g ) N1ICD is expressed in trabecular endocardium (g , white arrowheads) and coronary vessels endothelium (g , red arrowhead). (h,h ) Jag1 (green) and Venus (grey) expression in a CBF:H2B-Venus reporter embryo. Endocardial cells (yellow arrowheads) and coronary vessel endothelium (red arrowheads) are Venus+. Scale bar, 100 μm. Source data available in Supplementary Table 4.

Supplementary Figure 2

Dll4 abrogation disrupts Notch activity and trabecular marker expression (ac) and Gpr126 expression responds to Notch activation (d-h). (a) Top, N1ICD immunostaining in E9.5 WT and Dll4flox;Nfat-Cre hearts. Middle, N1ICD expression in aortic endothelial cells. Bottom, N1ICD staining in E9.5 WT and Dll4flox;Tie2-Cre hearts. (b) Ratios of N1ICD-positive to total endocardial nuclei. Data are mean ± S.D. (n = 3 WT embryos, n = 3 Dll4flox;Nfat-Cre embryos and n = 3 Dll4flox;Tie2-Cre embryos, P < 0.01, P < 0.001, by Student’s t test). (c) Hey2, EfnB2 Nrg1 and Bmp10 ISH in E9.5 WT and Dll4flox;Tie2-Cre embryos. Scale bar, 50 μm. (df ) Reduced gpr126 expression in zebrafish larvae with impaired Notch signalling. Panels show lateral and ventral views. Lateral and ventral views of the ISH of gpr126 in WT (d,d 27 out of 29; 93%), mib1ta52b mutant (e,e , 35 out of 38; 92%) and RO-treated WT (f,f , 19 out of 22; 86%), 48-h.p.f. zebrafish embryos showing gpr126 transcripts in the heart tube (arrowhead) and ear region (arrow) in d, and reduced expression in e,f. Scale bar, 50 μm. (g) qRT-PCR analysis showing the effect of Dll4- or Dll4 + RO-stimulation on the transcription of Gpr126, Dll4 and the Notch targets Hey1, Hey2, HeyL and Nrarp in HUVEC. Data are mean ± S.D. (n = 4 independent biological replicates for each condition; P < 0.05, P < 0.01, P < 0.001 by Student’s t test). (h) Gpr126 reporter activity measured by luciferase assay in BAEC. Data are mean ± S.D. (n = 4 independent biological replicates for each condition; P < 0.01, P < 0.001 by Student’s t test). Source data available in Supplementary Table 4.

Supplementary Figure 3 Dll4-Notch1 activity is required for coronary vessel formation.

(a, c) Images of whole-mount E15.5 WT and Dll4flo/floxx;Cdh5-Cre/ + (Dll4flox;Cdh5-Cre) mutant embryos. Note the dorsal oedema (arrowhead) in the mutant embryos. Scale bar, 2mm. Dotted lines indicate the plane of the H&E stained sections shown in (b,d). The heart in the Dll4flox;Cdh5-Cre mutant has thinner ventricular walls (d, yellow bars) than its WT littermate (b). (ef ) ISH in E15.5 hearts. Dll4 is transcribed in coronary vessel endothelium (e , black arrowhead) and weakly expressed in endocardial cells (e , white arrowhead). Expression is severely impaired in the mutant heart (f,f ). (gh ) N1ICD immunostaining. N1ICD staining is strong throughout the endocardium and in coronary vessels of WT ventricle (g , arrowhead), and weak in coronary vessels of mutant embryos (h , arrowhead). (ip ) ISH analysis. (ij ) Hey2 expression is similar in the compact myocardium of WT embryos (i,i ) and mutants (j,j ). Note the slightly thinner compact myocardium in the Dll4flox;Cdh5-Cre mutant heart (j , bracket). (kp ) Expression of the coronary artery endothelial cell markers HeyL (kl ), EfnB2 (mn ) and Cx40 (op ) is markedly lower in mutant embryos. The arrowheads mark expression in coronary vessels which appear smaller in Dll4flox;Cdh5-Cre mutants. Scale bar in (b,d,ep ) = 100 μm.

Supplementary Figure 4

Summary of the comparative expression profiling of Dll4flox;Tie2-Cre, Dll4flox;Nfat-Cre, and Notch1flox;Nfat-Cre mutants (a,b) and attenuated gpr126 expression after Notch abrogation in zebrafish (ce ). (a) Log fold change (logFC) hierarchical clustering of the 858 genes differentially expressed at E9.5 in the hearts of at least two genotypes among E9.5 Dll4flox;Tie2-Cre, Dll4flox;Nfat-Cre and Notch1flox;Nfat-Cre mutants. The colour scheme represents the logFC in any of the genotypes compared with its control, with upregulated genes indicated in yellow, downregulated in blue, and black for no significant change. (b) Subsets of genes clustered into functional categories (right panels). The total number of deregulated genes for each genotype and the genes represented in the heat map can be found in Supplementary Table 1.

Supplementary Figure 5

Myocardial Jag1 is dispensable for Notch signalling activation during trabeculation (ac) but is required for Notch activation during chamber maturation and compaction and ventricular maturation (df ). (a) E10.5 WT and Jag1flox/flox;cTnT-Cre/ + (Jag1flox;cTnT-Cre) mutant hearts. (a) H&E staining. Trabeculae and compact myocardium thickness are similar in WT and mutant hearts. Jag1 (red) is expressed in the trabeculae of the WT ventricle (arrows) but is absent from the mutant ventricle. N1ICD immunostaining (red, arrowheads) in the endomucin-delineated endocardium (green) of WT and Jag1flox;cTnT-Cre mutant embryos. (b) Quantification of N1ICD-positive nuclei as the mean percentage of total nuclei in WT and Jag1flox;cTnT-Cre mutant embryos. Data are mean ± S.D. (n = 3 WT and n = 3 mutant embryos, n.s., not significant, by Student’s t test). (c) ISH. Hey2, EfnB2, Nrg1 and Bmp10 are normally expressed in E10.5 mutant hearts. (d) E13.5. Jag1 and N1ICD immunostainings in WT (d, left) and Jag1flox;cTnT-Cre mutant heart sections (d, right). Jag1 is strongly expressed in trabecular myocardium (arrowhead) and weakly in compact myocardium (arrow). N1ICD is expressed throughout the endocardium (arrowheads). Myocardial deletion of Jag1 attenuates Notch1 activity. (ef ) Anf ISH. E16.5 WT heart showing normal expression in trabeculae and septum (e,e , arrowheads) and reduced expression in Jag1flox;cTnT-Cre hearts (f,f , arrowheads). Abbreviations as in previous figures. Scale bar, 100 μm. Source data available in Supplementary Table 4.

Supplementary Figure 6

Quantification of regional compact myocardium thickness and trabecular area in E16.5 Jag1flox;Jag2flox;cTnT-Cre M-Fngtg;Tie2-Cre and Mib1flox;cTnT-Cre mutants (a), compact myocardium thickness and complexity of trabecular myocardium in E16.5 Mib1flox;cTnT-Cre mutants (a) and cellular proliferation in E13.5 Mib1flox;cTnT-Cre mice (b,cd ). (a) For quantification of the morphological parameters the following number of samples were analysed per genotype: Jag1flox;Jag2flox;cTnT-Cre (n = 3 WT and n = 3 mutant embryos), M-Fngtg;Tie2-Cre (n = 3 WT and n = 4 mutant embryos) and Mib1flox;cTnT-Cre (n = 3 WT and n = 3 mutant embryos). (b,cd ) Cellular proliferation measured by BrdU immunostaining. BrdU (green), SMA (red) and DAPI (blue) staining of E13.5 WT (c,c ) and Mib1flox;cTnT-Cre heart (d,d ). The arrows point to BrdU-positive endocardial nuclei and the arrowheads to BrdU-positive cardiomyocytes. Scale bar, 100 μm. Data are means ± S.D. (P < 0.05, P < 0.01, P < 0.001, by Student’s t test. n.s., not significant). Source data available in Supplementary Table 4.

Supplementary Figure 7 Notch signalling abrogation disrupts compaction.

E16.5 heart sections stained with endomucin (green) and cTnT antibodies (red) to delineate chamber endocardium and myocardium. The WT heart (aa ′′) has a thick, cTnT-positive compact myocardium in both ventricles, with compacting trabeculae covered by endomucin-positive endocardium. The Jag1flox;Jag2flox;cTnT-Cre (bb ′′), M-Fngtg;Tie2-Cre (cc ′′) and Mib1flox;cTnT-Cre hearts (dd ) show very thin compact myocardium, uncompacted trabeculae and disrupted ventricular septum. The white bars in (a d ′′) indicate compact myocardium thickness. The red and yellow brackets in (a) indicate the basal and apical regions measured to determine the compact myocardium thickness shown in Fig. 2,4,5 and 6. The yellow bar indicates the thickness of compact myocardium. Scale bar, 100 μm.

Supplementary Figure 8

Analysis of Lunatic Fringe and Radical Fringe expression in the embryonic heart (a,b) and characterization of gene expression in GFP-MEVEC and MFng-MEVEC (c). (a) ISH analysis of LFng and RFng in WT hearts. LFng expression is detected in proepicardial cells of E9.5 embryos (arrowhead) and is restricted to the epicardium of E10.5 and E11.5 hearts (arrowheads). RFng is not detected in the heart at these stages. (b) Relative mRNA expression of LFng and R-Fng in E.8.5E11.5 ventricles. Data are means ± S.D. (n = 3 pools of 5 WT hearts at E8.5, and n = 3 pools of 3 ventricles per pool at E9.5-E11.5 (c) MEVEC. qRT-PCR analysis of Notch pathway genes and endocardial markers, indicating similar expression levels of these genes in GFP-MEVEC and MFng-MEVEC. Note the very high MFng transcript expression after lentiviral transduction in MEVEC. Data are means ± S.D. (n = 2 independent biological replicates for each condition). Scale bar, 100 μm. Source data available in Supplementary Table 4.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2792 kb)

Supplementary Data File 1

Supplementary Information (PDF 19602 kb)

Supplementary Data File 2

Supplementary Information (PDF 11456 kb)

Supplementary Data File 3

Supplementary Information (PDF 20701 kb)

Supplementary Table 1

Supplementary Information (XLSX 1416 kb)

Supplementary Table 2

Supplementary Information (XLSX 35 kb)

Supplementary Table 3

Supplementary Information (XLSX 48 kb)

Supplementary Table 4

Supplementary Information (XLSX 106 kb)

Imaris 3D reconstruction of whole-mount stained E9.5 CBF1:2HB-Venus heart.

The myocardial surface in red was built from the SMA staining. Venus (white nuclei), revealing Notch activity in CD31/Pecam1-positive cells (green), can be observed in the ventricular endocardium. Nuclei are counterstained with DAPI. (MOV 6211 kb)

Representative Z-stack of CMRI short axis views of hearts from 6-month-old WT and Jag1flox;cTnT-Cre mice.

The mutant heart exhibits dilated ventricles and a thinner septum than the WT heart. (MOV 21291 kb)

Representative M-mode echocardiography analysis of the hearts of 6-month-old WT and Jag1flox;cTnT-Cre mice.

The mutant heart shows contraction defects. (MOV 13239 kb)

Representative Z-stack of CMRI short axis views of hearts from 6-month-old WT and Jag1flox;cTnT-Cre mice.

The mutant heart exhibits a remarked segmental dyskinesia in the RV free wall. (MOV 8548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amato, G., Luxán, G., del Monte-Nieto, G. et al. Sequential Notch activation regulates ventricular chamber development. Nat Cell Biol 18, 7–20 (2016). https://doi.org/10.1038/ncb3280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb3280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing