Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system

Abstract

The ATP-driven chaperone valosin-containing protein (VCP)/p97 governs critical steps in ubiquitin-dependent protein quality control and intracellular signalling pathways. It cooperates with diverse partner proteins to help process ubiquitin-labelled proteins for recycling or degradation by the proteasome in many cellular contexts. Recent studies have uncovered unexpected cellular functions for p97 in autophagy, endosomal sorting and regulating protein degradation at the outer mitochondrial membrane, and elucidated a role for p97 in key chromatin-associated processes. These findings extend the functional relevance of p97 to lysosomal degradation and reveal a surprising dual role in protecting cells from protein stress and ensuring genome stability during proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hexameric AAA+ protein VCP/p97 and its cofactors.
Figure 2: Models for p97 activity in the ubiquitin system.
Figure 3: Emerging cellular roles of p97 in interphase.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Peters, J. M., Walsh, M. J. & Franke, W. W. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins, Sec18p and NSF. EMBO J. 9, 1757–1767 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Meyer, H. H. Golgi reassembly after mitosis: the AAA family meets the ubiquitin family. Biochim. Biophys. Acta 1744, 108–119 (2005).

    CAS  PubMed  Google Scholar 

  3. Ye, Y. Diverse functions with a common regulator: Ubiquitin takes command of an AAA ATPase. J. Struct. Biol. 56, 29–40 (2006).

    Google Scholar 

  4. Jentsch, S. & Rumpf, S. Cdc48 (p97): a “molecular gearbox” in the ubiquitin pathway? Trends Biochem. Sci. 32, 6–11 (2007).

    CAS  PubMed  Google Scholar 

  5. Stolz, A., Hilt, W., Buchberger, A. & Wolf, D. H. Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36, 515–523 (2011).

    CAS  PubMed  Google Scholar 

  6. Chapman, E., Fry, A. N. & Kang, M. The complexities of p97 function in health and disease. Mol. Biosyst. 7, 700–710 (2011).

    CAS  PubMed  Google Scholar 

  7. Haines, D. S. p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association? Genes Cancer 1, 753–763 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pye, V. E. et al. Going through the motions: the ATPase cycle of p97. J. Struct. Biol. 156, 12–28 (2006).

    CAS  PubMed  Google Scholar 

  9. DeLaBarre, B. & Brunger, A. T. Nucleotide dependent motion and mechanism of action of p97/VCP. J. Mol. Biol. 347, 437–452 (2005).

    CAS  PubMed  Google Scholar 

  10. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 931–14 (2006).

    Google Scholar 

  11. Schuberth, C. & Buchberger, A. UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell. Mol. Life Sci. 65, 2360–2371 (2008).

    CAS  PubMed  Google Scholar 

  12. Yeung, H. O. et al. Insights into adaptor binding to the AAA protein p97. Biochem. Soc. Trans. 36, 62–67 (2008).

    CAS  PubMed  Google Scholar 

  13. Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).

    CAS  PubMed  Google Scholar 

  14. Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y., Satoh, A., Warren, G. & Meyer, H. H. VCIP135 acts as a deubiquitinating enzyme during p97-p47-mediated reassembly of mitotic Golgi fragments. J. Cell Biol. 164, 973–978 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schuberth, C. & Buchberger, A. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat. Cell Biol. 7, 999–1006 (2005).

    CAS  PubMed  Google Scholar 

  17. Neuber, O., Jarosch, E., Volkwein, C., Walter, J. & Sommer, T. Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat. Cell Biol. 7, 993–998 (2005).

    CAS  PubMed  Google Scholar 

  18. Totsukawa, G. et al. VCIP135 deubiquitinase and its binding protein, WAC, in p97ATPase-mediated membrane fusion. EMBO J. 30, 3581–3593 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexandru, G. et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 134, 804–816 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ritz, D. et al. Endolysosomal sorting of ubiquitinated caveolin-1 is regulated by VCP/p97 and UBXD1 and impaired by VCP disease mutations. Nat. Cell Biol. 13, 1116–1123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bruderer, R. M., Brasseur, C. & Meyer, H. H. The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1–Npl4 and p47, through a common bipartite binding mechanism. J. Biol. Chem. 279, 49609–49616 (2004).

    CAS  PubMed  Google Scholar 

  22. Hanzelmann, P., Buchberger, A. & Schindelin, H. Hierarchical binding of cofactors to the AAA ATPase p97. Structure 19, 833–843 (2011).

    PubMed  Google Scholar 

  23. Meyer, H. H., Wang, Y. & Warren, G. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1–Npl4. EMBO J. 21, 5645–5652 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Elsasser, S. & Finley, D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7, 742–749 (2005).

    CAS  PubMed  Google Scholar 

  25. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48 (UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    CAS  PubMed  Google Scholar 

  26. Ye, Y., Meyer, H. H. & Rapoport, T. A. Function of the p97–Ufd1–Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 162, 71–84 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dai, R. M. & Li, C. C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat. Cell Biol. 3, 740–744 (2001).

    CAS  PubMed  Google Scholar 

  28. Shcherbik, N. & Haines, D. S. Cdc48p (Npl4p/Ufd1p) binds and segregates membrane-anchored/tethered complexes via a polyubiquitin signal present on the anchors. Mol. Cell 25, 385–397 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramadan, K. et al. Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258–1262 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Verma, R., Oania, R., Fang, R., Smith, G. T. & Deshaies, R. J. Cdc48/p97 mediates UV-dependent turnover of RNA Pol II. Mol. Cell 41, 82–92 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilcox, A. J. & Laney, J. D. A ubiquitin-selective AAA-ATPase mediates transcriptional switching by remodelling a repressor-promoter DNA complex. Nat. Cell Biol. 11, 1481–1486 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, S., Peng, G., Wang, Y., Fang, S. & Karbowski, M. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell 22, 291–300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Heo, J. M. et al. A stress-responsive system for mitochondrial protein degradation. Mol. Cell 40, 465–480 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Beskow, A. et al. A conserved unfoldase activity for the p97 AAA-ATPase in proteasomal degradation. J. Mol. Biol. 394, 732–746 (2009).

    CAS  PubMed  Google Scholar 

  35. Rabouille, C. et al. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic Golgi fragments in vitro. Cell 92, 603–610 (1998).

    CAS  PubMed  Google Scholar 

  36. Wang, Q., Li, L. & Ye, Y. Inhibition of p97-dependent protein degradation by Eeyarestatin I. J. Biol. Chem. 283, 7445–7454 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ballar, P., Shen, Y., Yang, H. & Fang, S. The role of a novel p97/valosin-containing protein-interacting motif of gp78 in endoplasmic reticulum-associated degradation. J. Biol. Chem. 281, 35359–35368 (2006).

    CAS  PubMed  Google Scholar 

  38. Gauss, R., Sommer, T. & Jarosch, E. The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment. EMBO J. 25, 1827–1835 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rumpf, S. & Jentsch, S. Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. Mol. Cell 21, 261–269 (2006).

    CAS  PubMed  Google Scholar 

  40. Kuhlbrodt, K. et al. The Machado-Joseph disease deubiquitylase ATX-3 couples longevity and proteostasis. Nat. Cell Biol. 13, 273–281 (2011).

    CAS  PubMed  Google Scholar 

  41. Wang, Q., Li, L. & Ye, Y. Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J. Cell Biol. 174, 963–971 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ernst, R., Mueller, B., Ploegh, H. L. & Schlieker, C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell 36, 28–38 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).

    CAS  PubMed  Google Scholar 

  45. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nat. Cell Biol. 7, 766–772 (2005).

    CAS  PubMed  Google Scholar 

  46. Kothe, M. et al. Role of p97 AAA-ATPase in the retrotranslocation of the cholera toxin A1 chain, a non-ubiquitinated substrate. J. Biol. Chem. 280, 28127–28132 (2005).

    CAS  PubMed  Google Scholar 

  47. Nishikori, S., Yamanaka, K., Sakurai, T., Esaki, M. & Ogura, T. p97 homologs from Caenorhabditis elegans, CDC–48.1 and CDC–48.2, suppress the aggregate formation of huntingtin exon1 containing expanded polyQ repeat. Genes Cells 13, 827–838 (2008).

    CAS  PubMed  Google Scholar 

  48. Song, C., Wang, Q. & Li, C. C. Characterization of the aggregation-prevention activity of p97/valosin-containing protein. Biochemistry 46, 14889–14898 (2007).

    CAS  PubMed  Google Scholar 

  49. Kobayashi, T., Manno, A. & Kakizuka, A. Involvement of valosin-containing protein (VCP)/p97 in the formation and clearance of abnormal protein aggregates. Genes Cells 12, 889–901 (2007).

    CAS  PubMed  Google Scholar 

  50. Boeddrich, A. et al. An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J. 25, 1547–1558 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Duennwald, M. L. & Lindquist, S. Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev. 22, 3308–3319 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Livnat-Levanon, N. & Glickman, M. H. Ubiquitin-proteasome system and mitochondria - reciprocity. Biochim. Biophys. Acta 1809, 80–87 (2011).

    CAS  PubMed  Google Scholar 

  53. Tanaka, A. et al. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 191, 1367–1380 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wild, P. & Dikic, I. Mitochondria get a Parkin' ticket. Nat. Cell Biol. 12, 104–106 (2010).

    CAS  PubMed  Google Scholar 

  55. Xie, Z. & Klionsky, D. J. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9, 1102–1109 (2007).

    CAS  PubMed  Google Scholar 

  56. Tresse, E. et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6, 217–227 (2010).

    CAS  PubMed  Google Scholar 

  57. Ju, J. S. & Weihl, C. C. p97/VCP at the intersection of the autophagy and the ubiquitin proteasome system. Autophagy 6, 283–285 (2010).

    CAS  PubMed  Google Scholar 

  58. Custer, S. K., Neumann, M., Lu, H., Wright, A. C. & Taylor, J. P. Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum. Mol. Genet. 19, 1741–1755 (2010).

    CAS  PubMed  Google Scholar 

  59. Badadani, M. et al. VCP associated inclusion body myopathy and paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS ONE 5, e13183 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Chou, T. F. et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl Acad. Sci. USA 108, 4834–4839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ossareh-Nazari, B. et al. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep. 11, 548–554 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Krick, R. et al. Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J. Cell Biol. 190, 965–973 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pleasure, I. T., Black, M. M. & Keen, J. H. Valosin-containing protein, VCP, is a ubiquitous clathrin-binding protein. Nature 365, 459–462 (1993).

    CAS  PubMed  Google Scholar 

  64. Ramanathan, H. N. & Ye, Y. The p97 ATPase associates with EEA1 to regulate the size of early endosomes. Cell Res. http://dx.doi.org/10.1038/cr.2011.80 (2011).

  65. Ren, J., Pashkova, N., Winistorfer, S. & Piper, R. C. DOA1/UFD3 plays a role in sorting ubiquitinated membrane proteins into multivesicular bodies. J. Biol. Chem. 283, 21599–21611 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zehner, M. et al. Mannose receptor polyubiquitination regulates endosomal recruitment of p97 and cytosolic antigen translocation for cross-presentation. Proc. Natl Acad. Sci. USA 108, 9933–9938 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rusten, T. E. & Stenmark, H. How do ESCRT proteins control autophagy? J. Cell Sci. 122, 2179–2183 (2009).

    CAS  PubMed  Google Scholar 

  68. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat. Genet. 37, 806–808 (2005).

    CAS  PubMed  Google Scholar 

  69. Sasagawa, Y. et al. Caenorhabditis elegans p97 controls germline-specific sex determination by controlling the TRA–1 level in a CUL–2-dependent manner. J. Cell. Sci. 122, 3663–3672 (2009).

    CAS  PubMed  Google Scholar 

  70. Rumpf, S., Lee, S. B., Jan, L. Y. & Jan, Y. N. Neuronal remodeling and apoptosis require VCP-dependent degradation of the apoptosis inhibitor DIAP1. Development 138, 1153–1160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, Q. et al. ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc. Natl Acad. Sci. USA 106, 2200–2205 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fu, X., Ng, C., Feng, D. & Liang, C. Cdc48p is required for the cell cycle commitment point at Start via degradation of the G1-CDK inhibitor Far1p. J. Cell Biol. 163, 21–26 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mouysset, J. et al. Cell cycle progression requires the CDC-48–UFD-1–NPL-4 complex for efficient DNA replication. Proc. Natl Acad. Sci. USA 105, 12879–12884 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cao, K., Nakajima, R., Meyer, H. H. & Zheng, Y. The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell 115, 355–367 (2003).

    CAS  PubMed  Google Scholar 

  75. Cheng, Y. L. & Chen, R. H. The AAA-ATPase Cdc48 and cofactor Shp1 promote chromosome bi-orientation by balancing Aurora B activity. J. Cell Sci. 123, 2025–2034 (2010).

    CAS  PubMed  Google Scholar 

  76. Dobrynin, G. et al. Cdc48/p97–Ufd1–Npl4 antagonizes Aurora B during chromosome segregation in HeLa cells. J. Cell Sci. 124, 1571–1580 (2011).

    CAS  PubMed  Google Scholar 

  77. Vong, Q. P., Cao, K., Li, H. Y., Iglesias, P. A. & Zheng, Y. Chromosome alignment and segregation regulated by ubiquitination of survivin. Science 310, 1499–1504 (2005).

    CAS  PubMed  Google Scholar 

  78. Porter, I. M. et al. Bod1, a novel kinetochore protein required for chromosome biorientation. J. Cell Biol. 179, 187–197 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sasagawa, Y., Yamanaka, K., Nishikori, S. & Ogura, T. Caenorhabditis elegans p97/CDC-48 is crucial for progression of meiosis I. Biochem. Biophys. Res. Commun. 358, 920–924 (2007).

    CAS  PubMed  Google Scholar 

  80. Hetzer, M. et al. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat. Cell Biol. 3, 1086–1091 (2001).

    CAS  PubMed  Google Scholar 

  81. Sumara, I., Maerki, S. & Peter, M. E3 ubiquitin ligases and mitosis: embracing the complexity. Trends Cell Biol. 18, 84–94 (2008).

    CAS  PubMed  Google Scholar 

  82. Zhang, H., Wang, Q., Kajino, K. & Greene, M. I. VCP, a weak ATPase involved in multiple cellular events, interacts physically with BRCA1 in the nucleus of living cells. DNA Cell Biol. 19, 253–263 (2000).

    CAS  PubMed  Google Scholar 

  83. Indig, F. E. et al. Werner syndrome protein directly binds to the AAA ATPase p97/VCP in an ATP-dependent fashion. J. Struct. Biol. 146, 251–259 (2004).

    CAS  PubMed  Google Scholar 

  84. Yamada, T. et al. p97 ATPase, an ATPase involved in membrane fusion, interacts with DNA unwinding factor (DUF) that functions in DNA replication. FEBS Lett. 466, 287–291 (2000).

    CAS  PubMed  Google Scholar 

  85. Livingstone, M. et al. Valosin-containing protein phosphorylation at Ser784 in response to DNA damage. Cancer Res. 65, 7533–7540 (2005).

    CAS  PubMed  Google Scholar 

  86. Raman, M., Havens, C. G., Walter, J. C. & Harper, J. W. A genome-wide screen identifies p97 as an essential regulator of DNA damage-dependent CDT1 destruction. Mol. Cell 44, 72–84 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Franz, A. et al. CDC-48/p97 coordinates CDT-1 degradation with GINS chromatin dissociation to ensure faithful DNA replication. Mol. Cell 44, 85–96 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Meerang, M. et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double strand breaks. Nat. Cell Biol. 13, 1376–1382 (2011).

    CAS  PubMed  Google Scholar 

  89. Ramadan, K. & Meerang, M. Degradation-linked ubiquitin signal and proteasome are integral components of DNA double strand break repair: New perspectives for anti-cancer therapy. FEBS Lett. 585, 2868–2875 (2011).

    CAS  PubMed  Google Scholar 

  90. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377–381 (2004).

    CAS  PubMed  Google Scholar 

  91. Johnson, J. O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kimonis, V. E., Fulchiero, E., Vesa, J. & Watts, G. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim. Biophys. Acta 1782, 744–748 (2008).

    CAS  PubMed  Google Scholar 

  93. Shaw, C. E. Capturing VCP: another molecular piece in the ALS jigsaw puzzle. Neuron 68, 812–814 (2010).

    CAS  PubMed  Google Scholar 

  94. Tang, W. K. et al. A novel ATP-dependent conformation in p97 N-D1 fragment revealed by crystal structures of disease-related mutants. EMBO J. 29, 2217–2229 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Manno, A., Noguchi, M., Fukushi, J., Motohashi, Y. & Kakizuka, A. Enhanced ATPase activities as a primary defect of mutant valosin-containing proteins that cause inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Genes Cells 15, 911–922 (2010).

    CAS  PubMed  Google Scholar 

  96. Halawani, D. et al. Hereditary inclusion body myopathy-linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation. Mol. Cell Biol. 29, 4484–4494 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Weihl, C. C., Dalal, S., Pestronk, A. & Hanson, P. I. Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum. Mol. Genet. 15, 189–199 (2006).

    CAS  PubMed  Google Scholar 

  98. Fernandez-Saiz, V. & Buchberger, A. Imbalances in p97 co-factor interactions in human proteinopathy. EMBO Rep. 11, 479–485 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Janiesch, P. C. et al. The ubiquitin-selective chaperone CDC- 48/p97 links myosin assembly to human myopathy. Nat. Cell Biol. 9, 379–390 (2007).

    CAS  PubMed  Google Scholar 

  100. Ju, J. S. et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875–888 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Ehrmann, P. Freemont, C. C. Weihl and V. Panse for critical reading. H. M. is supported by the DFG priority program SPP1365/2. We apologize to many colleagues whose work was not cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemmo Meyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14, 117–123 (2012). https://doi.org/10.1038/ncb2407

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2407

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing