Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Store-operated cyclic AMP signalling mediated by STIM1

Abstract

Depletion of Ca2+ from the endoplasmic reticulum (ER) results in activation of plasma membrane Ca2+ entry channels. This 'store-operated' process requires translocation of a transmembrane ER Ca2+ sensor protein, stromal interaction molecule 1 (STIM1), to sites closely apposed to Ca2+ channels at the cell surface. However, it is not known whether a reduction in Ca2+ stores is coupled to other signalling pathways by this mechanism. We found that lowering the concentration of free Ca2+ in the ER, independently of the cytosolic Ca2+ concentration, also led to recruitment of adenylyl cyclases. This resulted in enhanced cAMP accumulation and PKA activation, measured using FRET-based cAMP indicators. Translocation of STIM1 was required for efficient coupling of ER Ca2+ depletion to adenylyl cyclase activity. We propose the existence of a pathway (store-operated cAMP signalling or SOcAMPS) in which the content of internal Ca2+ stores is directly connected to cAMP signalling through a process that involves STIM1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chelation of Ca2+ within internal stores of NCM460 cells induces STIM1 translocation, cAMP signalling and PKA phosphorylation.
Figure 2: Depletion of internal Ca2+ stores with ionomycin enhances cAMP signalling, PKA phosphorylation and expression of ICER in NCM460 cells.
Figure 3: Effects of store depletion on intracellular cAMP in the presence of extracellular Ca2+ in NCM460 cells.
Figure 4: Store depletion-induced cAMP signalling results from activation of ACs and not inhibition of PDEs.
Figure 5: STIM1 expression is required for store-operated cAMP signalling.
Figure 6: Translocation of STIM protein is necessary to initiate store-operated cAMP signalling.

Similar content being viewed by others

References

  1. Neves, S. R., Ram, P. T. & Iyengar, R. G protein pathways. Science 296, 1636–1639 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Luik, R. M. & Lewis, R. S. New insights into the molecular mechanisms of store-operated Ca2+ signaling in T cells. Trends Mol. Med. 13, 103–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Putney, J. W., Jr New molecular players in capacitative Ca2+ entry. J. Cell Sci. 120, 1959–1965 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Parekh, A. B. & Putney, J. W., Jr Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Dziadek, M. A. & Johnstone, L. S. Biochemical properties and cellular localisation of STIM proteins. Cell Calcium 42, 123–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl Acad. Sci. USA 104, 9301–9306 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Willoughby, D. & Cooper, D. M. Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol. Rev. 87, 965–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Goraya, T. A. & Cooper, D. M. Ca2+-calmodulin-dependent phosphodiesterase (PDE1): current perspectives. Cell Signal. 17, 789–797 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Houslay, M. D. & Milligan, G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem. Sci. 22, 217–224 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Gerbino, A. et al. Termination of cAMP signals by Ca2+ and G(α)i via extracellular Ca2+ sensors: a link to intracellular Ca2+ oscillations. J. Cell Biol. 171, 303–312 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arslan, P., Di Virgilio, F., Beltrame, M., Tsien, R. Y. & Pozzan, T. Cytosolic Ca2+ homeostasis in Ehrlich and Yoshida carcinomas. A new, membrane-permeant chelator of heavy metals reveals that these ascites tumor cell lines have normal cytosolic free Ca2+. J. Biol. Chem. 260, 2719–2727 (1985).

    CAS  PubMed  Google Scholar 

  18. Caroppo, R. et al. A reassessment of the effects of luminal [Ca2+] on inositol 1, 4, 5-trisphosphate-induced Ca2+ release from internal stores. J. Biol. Chem. 278, 39503–39508 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Hofer, A. M., Fasolato, C. & Pozzan, T. Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal [Ca2+]. J. Cell Biol. 140, 325–334 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moyer, M. P., Manzano, L. A., Merriman, R. L., Stauffer, J. S. & Tanzer, L. R. NCM460, a normal human colon mucosal epithelial cell line. In Vitro Cell Dev. Biol. Anim. 32, 315–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Hofer, A. M. & Machen, T. E. Technique for in situ measurement of calcium in intracellular inositol 1, 4, 5-trisphosphate-sensitive stores using the fluorescent indicator mag-fura-2. Proc. Natl Acad. Sci. USA 90, 2598–2602 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ponsioen, B. et al. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep. 5, 1176–1180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Allen, M. D. & Zhang, J. Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem. Biophys. Res. Commun. 348, 716–721 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Sassone-Corsi, P. Transcription factors responsive to cAMP. Annu. Rev. Cell Dev. Biol 11, 355–377 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Smyth, J. T., Dehaven, W. I., Bird, G. S. & Putney, J. W., Jr. Ca2+-store-dependent and -independent reversal of Stim1 localization and function. J. Cell Sci. 121, 762–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Peinelt, C., Lis, A., Beck, A., Fleig, A. & Penner, R. 2-APB directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J. Physiol. (2008).

  28. Rizzuto, R. & Pozzan, T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol. Rev. 86, 369–408 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Paschen, W. & Mengesdorf, T. Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 38, 409–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Burdakov, D., Petersen, O. H. & Verkhratsky, A. Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 38, 303–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Gwack, Y. et al. Biochemical and functional characterization of Orai proteins. J. Biol. Chem. 282, 16232–16243 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Xu, P. et al. Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem. Biophys. Res. Commun. 350, 969–976 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Varnai, P., Toth, B., Toth, D. J., Hunyady, L. & Balla, T. Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1–Orai1 complex. J. Biol. Chem. 282, 29678–29690 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Liao, Y. et al. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc. Natl Acad. Sci. USA 105, 2895–2900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng, K. T., Liu, X., Ong, H. L. & Ambudkar, I. S. Functional requirement for Orai1 in store-operated TRPC1/STIM1 channels. J. Biol. Chem. (2008).

  36. Huang, G. N. et al. STIM1 carboxy terminus activates native SOC, I(crac) and TRPC1 channels. Nature Cell Biol. 8, 1003–1010 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Yuan, J. P., Zeng, W., Huang, G. N., Worley, P. F. & Muallem, S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nature Cell Biol. 9, 636–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Ong, H. L. et al. Dynamic assembly of TRPC1–STIM1–Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J. Biol. Chem. 282, 9105–9116 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Baragli, A., Grieco, M. L., Trieu, P., Villeneuve, L. R. & Hebert, T. E. Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Gα s. Cell Signal. 20, 480–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Malli, R., Naghdi, S., Romanin, C. & Graier, W. F. Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload. J. Cell Sci. 121, 3133–3139 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Selbie, L. A. & Hill, S. J. G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways. Trends Pharmacol. Sci. 19, 87–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Urushidani, T. & Forte, J. G. Signal transduction and activation of acid secretion in the parietal cell. J. Membr. Biol. 159, 99–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Maloney, J. A. et al. Activation of ERK by Ca2+ store depletion in rat liver epithelial cells. Am. J. Physiol. 276, C221–230 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Strayer, D. S., Hoek, J. B., Thomas, A. P. & White, M. K. Cellular activation by Ca2+ release from stores in the endoplasmic reticulum but not by increased free Ca2+ in the cytosol. Biochem. J. 344, 39–46 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sargeant, P., Farndale, R. W. & Sage, S. O. Calcium store depletion in dimethyl BAPTA-loaded human platelets increases protein tyrosine phosphorylation in the absence of a rise in cytosolic calcium. Exp. Physiol. 79, 269–272 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Yoshida, H. ER stress and diseases. FEBS J. 274, 630–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature Rev. Mol. Cell Biol. 2, 599–609 (2001).

    Article  CAS  Google Scholar 

  48. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  49. Williams, R. T. et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem. J. 357, 673–685 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the following individuals for their kind gifts of plasmids: Kees Jalink for the Epac sensor, Roger Tsien for mCherry, Jin Zhang for AKAR3, Marie Dziadek and Lorna Johnstone for STIM1 and STIM2, Masaru Okabe for pCX–EGFP, and Tobias Meyer for YFP–STIM1, YFP–STIM1D76A, and YFP–STIM2 constructs. We thank Jessica Roy for technical assistance and Drs. Dheeraj Pelluru, Eberhard Frömter and Raj K. Goyal for helpful comments. This study was supported by a Merit Review award from the Department of Veteran's Affairs (A.M.H.) and by an NIH Center grant from the Harvard Digestive Diseases Center (to A.M.H.). K.L. is the recipient of an American Heart Association Postdoctoral Fellowship award.

Author information

Authors and Affiliations

Authors

Contributions

K.L., I.M. and A.M.H. performed experiments; K.L., A.M.H., and S.C. designed experiments, and along with M.S., analyzed data. M.P.M. provided reagents. A.M.H. wrote the manuscript.

Corresponding author

Correspondence to Aldebaran M. Hofer.

Ethics declarations

Competing interests

M.P.M. holds partial ownership of INCELL Corporation, which sells the M3:10 tissue culture medium used to grow NCM460 cells. The other authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefkimmiatis, K., Srikanthan, M., Maiellaro, I. et al. Store-operated cyclic AMP signalling mediated by STIM1. Nat Cell Biol 11, 433–442 (2009). https://doi.org/10.1038/ncb1850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing