Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

C-terminal modifications regulate MDM2 dissociation and nuclear export of p53

Abstract

p53 functions to prevent malignant progression, in part by inhibiting proliferation or inducing the death of potential tumour cells1. One of the most important regulators of p53 is MDM2, a RING domain E3 ligase that ubiquitinates p53, leading to both proteasomal degradation and relocation of p53 from the nucleus to the cytoplasm1. Previous studies have suggested that although polyubiquitination is required for degradation, monoubiquitination of p53 is sufficient for nuclear export2. Using a p53–ubiquitin fusion protein we show that ubiquitination contributes to two steps before export: exposure of a carboxy-terminal nuclear export sequence (NES), and dissociation of MDM2. Monoubiquitination can directly promote further modifications of p53 with ubiquitin-like proteins and MDM2 promotes the interaction of the SUMO E3 ligase PIASy with p53, enhancing both sumoylation and nuclear export. Our results suggest that modifications such as sumoylation can regulate the strength of the p53–MDM2 interaction and participate in driving the export of p53.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
Figure 2: Nuclear export of p53 requires dissociation of MDM2.
Figure 3: The p53–UbΔGG fusion protein is further modified with ubiquitin, SUMO-1 and NEDD8.
Figure 4: MDM2 can cooperate with the SUMO E3 ligase PIASy to promote p53 sumoylation and nuclear export.
Figure 5: Schematic representation of a model for the regulation of p53 export or degradation by modification with MDM2.

Similar content being viewed by others

References

  1. Vousden, K. H. Activation of the p53 tumor suppressor gene. Biochem. Biophys. Acta 1602, 47–59 (2002).

    CAS  PubMed  Google Scholar 

  2. Li, M. et al. Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972–1975 (2003).

    Article  CAS  Google Scholar 

  3. Qian, S. B., Ott, D. E., Schubert, U., Bennink, J. R. & Yewdell, J. W. Fusion proteins with COOH-terminal ubiquitin are stable and maintain dual functionality in vivo. J. Biol. Chem. 277, 38818–38826 (2002).

    Article  CAS  Google Scholar 

  4. Zhang, Y. & Xiong, Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292, 1910–1915 (2001).

    Article  CAS  Google Scholar 

  5. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    Article  CAS  Google Scholar 

  6. Shaulsky, G., Goldfinger, N., Ben-Ze'ev, A. & Rotter, V. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell. Biol. 10, 6565–6577 (1990).

    Article  CAS  Google Scholar 

  7. Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T. & Lane, D. P. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83–97 (2004).

    Article  CAS  Google Scholar 

  8. Whitby, F. G., Xia, G., Pickart, C. M. & Hill, C. P. Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J. Biol. Chem. 273, 34983–34991 (1998).

    Article  CAS  Google Scholar 

  9. Shih, S. C., Sloper-Mould, K. E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000).

    Article  CAS  Google Scholar 

  10. Lee, J. C., Wang, G. X., Schickling, O. & Peter, M. E. Fusing DEDD with ubiquitin changes its intracellular localization and apoptotic potential. Apoptosis 10, 1483–1495 (2005).

    Article  CAS  Google Scholar 

  11. Hoeller, D. et al. Regultion of ubiquitin-binding proteins by monoubiquitination. Nature. Cell. Biol. 8, 163–169 (2006).

    Article  CAS  Google Scholar 

  12. Lohrum, M. A. E., Woods, D. B., Ludwig, R. L., Bá lint, E. & Vousden, K. H. C-terminal ubiquitination of p53 contributes to nuclear export. Mol. Cell. Biol. 21, 8521–8532 (2001).

    Article  CAS  Google Scholar 

  13. Gu, J., Nie, N., Wiederschain, D. & Yuan, Z.-M. Identification of p53 sequence elements that are required for MDM2-mediated nuclear export. Mol. Cell. Biol. 21, 8533–8546 (2001).

    Article  CAS  Google Scholar 

  14. Milner, J., Medcalf, E. A. & Cook, A. C. Tumor suppressor p53: analysis of wild-type and mutant p53 Complexes. Mol. Cell. Biol. 11, 12–19 (1991).

    Article  CAS  Google Scholar 

  15. Zerrahn, J. et al. Corelation between conformational phenotype of p53 and its subcellular location. Oncogene 7, 1371–1381 (1992).

    CAS  PubMed  Google Scholar 

  16. Pickart, C. M. Mechanisms underlying ubiquitination. Annual Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  17. Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461 (1999).

    Article  CAS  Google Scholar 

  18. Rodriguez, M. S., Dargemont, C. & Hay, R. T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659 (2001).

    Article  CAS  Google Scholar 

  19. Hicke, L., Schubert, H. L. & Hill, C. P. Ubiquitin-binding domains. Nature Rev. Mol. Cell Biol. 6, 610–621 (2005).

    Article  CAS  Google Scholar 

  20. Kahyo, T., Nishida, T. & Yasuda, H. Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol. Cell 8, 713–718 (2001).

    Article  CAS  Google Scholar 

  21. Schmidt, D. & Muller, S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc. Natl Acad. Sci. USA 99, 2872–2877 (2002).

    Article  CAS  Google Scholar 

  22. Bischof, O. et al. The E3 SUMO ligase PIASy is a novel regulator of cellular senscence and apoptosis. Mol. Cell. 22, 783–794 (2006).

    Article  CAS  Google Scholar 

  23. Nelson, V., Davis, G. E. & Maxwell, S. A. A putative protein inhibitor of activated STAT (PIASy) interacts with p53 and inhibits p53-mediated transactivation but not apoptosis. Apoptosis 6, 221–234 (2001).

    Article  CAS  Google Scholar 

  24. Kulikov, R., Winter, M. & Blattner, C. Binding of p53 to the central domain of Mdm2 is regulated by phosphorylation. J. Biol. Chem. 281, 28575–28583 (2006).

    Article  CAS  Google Scholar 

  25. Boyd, S. D., Tsai, K. Y. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biol. 2, 563–568 (2000).

    Article  CAS  Google Scholar 

  26. Geyer, R. K., Yu, Z. K. & Maki, C. G. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nature Cell Biol. 2, 569–573 (2000).

    Article  CAS  Google Scholar 

  27. Marston, N. J., Jenkins, J. R. & Vousden, K. H. Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene 10, 1709–1715 (1995).

    CAS  PubMed  Google Scholar 

  28. Kawaguchi, Y., Ito, A., Appella, E. & Yao, T. P. Charge modification at multiple C-terminal lysine residues regulates p53 oligomerization and its nucleus-cytoplasm trafficking. J. Biol. Chem. 281, 1394–1400 (2006).

    Article  CAS  Google Scholar 

  29. Feng, L., Lin, T., Uranishi, H., Gu, W. & Xu, Y. Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol. Cell. Biol. 25, 5389–5395 (2005).

    Article  CAS  Google Scholar 

  30. Krummel, K. A., Lee, C. J., Toledo, F. & Wahl, G. M. The C-terminal lysines fine-tune p53 stress response in a mouse model but are not required for stability control or transactivation. Proc. Natl Acad. Sci. USA 102, 10188–10193 (2005).

    Article  CAS  Google Scholar 

  31. Vousden, K. H. p53 and PUMA: a deadly duo. Science 9, 1685–1686 (2005).

    Article  Google Scholar 

  32. Uchida, C. et al. Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J. 24, 160–169 (2005).

    Article  CAS  Google Scholar 

  33. Ashcroft, M., Woods, D. B., Copeland, T. D. & Vousden, K. H. Phosphorylation of HDM2 by Akt. Oncogene 21, 1955–1962 (2002).

    Article  CAS  Google Scholar 

  34. Desterro, J. M., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IkBα inhibits NF-κB activation. Mol. Cell 2, 233–239 (1998).

    Article  CAS  Google Scholar 

  35. Marston, N. J., Crook, T. & Vousden, K. H. Interaction of p53 with MDM2 is independent of E6 and does not mediate wild type transformation suppressor function. Oncogene 9, 2707–2716 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HA-tagged SUMO-1, HA-tagged NEDD8 and UbR7 were a generous gift from R. Hay (University of Dundee, Dundee, UK). This work was funded by Cancer Research-UK and the EU FP6 INTACT project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Vousden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2. (PDF 379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, S., Bischof, O., Dejean, A. et al. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 9, 428–435 (2007). https://doi.org/10.1038/ncb1562

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1562

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing