Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticles for the delivery of genes and drugs to human hepatocytes

Abstract

Hepatitis B virus envelope L particles form hollow nanoparticles displaying a peptide that is indispensable for liver-specific infection by hepatitis B virus in humans. Here we demonstrate the use of L particles for the efficient and specific transfer of a gene or drug into human hepatocytes both in culture and in a mouse xenograft model. In this model, intravenous injection of L particles carrying the gene for green fluorescent protein (GFP) or a fluorescent dye resulted in observable fluorescence only in human hepatocellular carcinomas but not in other human carcinomas or in mouse tissues. When the gene encoding human clotting factor IX was transferred into the xenograft model using L particles, factor IX was produced at levels relevant to the treatment of hemophilia B. The yeast-derived L particle is free of viral genomes, highly specific to human liver cells and able to accommodate drugs as well as genes. These advantages should facilitate targeted delivery of genes and drugs to the human liver.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ex vivo gene transfer with L/GFP particles.
Figure 2: In vivo gene delivery with L/GFP particles in the mouse xenograft model.
Figure 3: In vivo expression of hFIX.
Figure 4: Ex vivo drug delivery with L/calcein particles.
Figure 5: In vivo drug delivery with L/calcein particles in the mouse xenograft model.
Figure 6: Ex vivo drug delivery with EGF/calcein particles.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Verma, I.M. & Sonia, N. Gene therapy: promises, problems, and prospects. Nature 389, 239–242 (1997).

    Article  CAS  Google Scholar 

  2. Friedmann, T. Human gene therapy: an immature genie, but certainly out of the bottle. Nat. Med. 2, 144–147 (1996).

    Article  CAS  Google Scholar 

  3. VandenDriessche, T. et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 100, 813–822 (2002).

    Article  CAS  Google Scholar 

  4. Chuah, M.K. et al. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. Blood 101, 1734–1743 (2003).

    Article  CAS  Google Scholar 

  5. Marshal, E. Viral vectors still pack surprises. Science 294, 1640 (2001).

    Article  Google Scholar 

  6. Marshal, E. Gene therapy death prompts review of adenovirus vector. Science 286, 2244–2245 (1999).

    Article  Google Scholar 

  7. Buckley, R.H. Gene therapy for SCID—a complication after remarkable progress. Lancet 360, 1185–1186 (2002).

    Article  Google Scholar 

  8. Fox, J.L. Investigation of gene therapy begins. Nat. Biotechnol. 18, 143–144 (2000).

    Article  CAS  Google Scholar 

  9. Heermann, K.H. et al. Large surface proteins of hepatitis B virus containing the pre-S sequence. J. Virol. 52, 396–402 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuroda, S., Itoh, Y., Miyazaki, T., Otaka-Imai, S. & Fujisawa, Y. Efficient expression of genetically engineered hepatitis B virus surface antigen P31 proteins in yeast. Gene 78, 297–308 (1989).

    Article  CAS  Google Scholar 

  11. Fujisawa, Y., Kuroda, S., Van Eerd, P.M., Schellekens, H. & Kakinuma, A. Protective efficacy of a novel hepatitis B vaccine consisting of M (pre-S2+S) protein particles (a third generation vaccine). Vaccine 8, 192–198 (1990).

    Article  CAS  Google Scholar 

  12. Kuroda, S., Fujisawa, Y., Iino, S., Akahane, Y. & Suzuki, H. Induction of protection level of anti-pre-S2 antibodies in humans immunized with a novel hepatitis B vaccine consisting of M (pre-S2+S) protein particles (a third generation vaccine). Vaccine 9, 163–169 (1991).

    Article  CAS  Google Scholar 

  13. Kuroda, S., Otaka, S., Miyazaki, T., Nakao, M. & Fujisawa, Y. Hepatitis B virus envelope L protein particles, synthesis and assembly in Saccharomyces cerevisiae, purification and characterization. J. Biol. Chem. 267, 1953–1961 (1992).

    CAS  PubMed  Google Scholar 

  14. Yamada, T. et al. Physicochemical and immunological characterization of hepatitis B virus envelope particles exclusively consisting of the entire L (pre-S1+pre-S2+S) protein. Vaccine 19, 3154–3163 (2001).

    Article  CAS  Google Scholar 

  15. Marion, P.L., Salazar, F.H., Alexander, J.J. & Robinson, W.S. Polypeptides of hepatitis B virus surface antigen produced by a hepatoma cell line. J. Virol. 32, 796–802 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Neurath, A.R., Kent, S.B., Stick, N. & Parker, K. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell 46, 429–436 (1986).

    Article  CAS  Google Scholar 

  17. Le Seyec, J., Chouteau, P., Cannie, I., Guguen-Guillouzo, C. & Gripon, P. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J. Virol. 73, 2052–2057 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobayashi, M. et al. Recombinant hepatitis B virus surface antigen carrying the pre-S2 region derived from yeast: purification and characterization. J. Biotechnol. 8, 1–22 (1988).

    Article  CAS  Google Scholar 

  19. Chuah, M.K. et al. Gene therapy for hemophilia. J. Gene Med. 3, 3–20 (2001).

    Article  CAS  Google Scholar 

  20. VandenDriessche, T., Collen, D. & Chuah, M.K.L. Viral vector-mediated gene therapy for hemophilia. Curr. Gene Ther. 1, 301–305 (2001).

    Article  CAS  Google Scholar 

  21. Follenzi, A., Sabatino, G., Lombardo, A., Boccaccio, C. & Naldini, L. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum. Gene Ther. 13, 243–260 (2002).

    Article  CAS  Google Scholar 

  22. Itoh, Y., Kuroda, S., Miyazaki, T., Otaka, S. & Fujisawa, Y. Identification of polymerized-albumin receptor domain in the pre-S2 region of hepatitis B virus surface antigen M protein. J. Biotechnol. 23, 71–82 (1992).

    Article  CAS  Google Scholar 

  23. Smith, K.R. Gene transfer in higher animals: theoretical considerations and key concepts. J. Biotechnol. 99, 1–22 (2002).

    Article  CAS  Google Scholar 

  24. Ishikawa, H. et al. Utilization of variant-type of human α-fetoprotein promoter in gene therapy targeting for hepatocellular carcinoma. Gene Ther. 6, 465–470 (1999).

    Article  CAS  Google Scholar 

  25. Carman, W.F. et al. Vaccine-induced escape mutant of hepatitis B virus. Lancet 336, 325–329 (1990).

    Article  CAS  Google Scholar 

  26. Chiou, H.L., Lee, T.S., Kuo, J., Mau, Y.C., and Ho, M.S. Altered antigenicity of 'a' determinant variants of hepatitis B virus. J. Gen. Virol. 78, 2639–2645 (1997).

    Article  CAS  Google Scholar 

  27. del Canho, R. et al. Ten-year neonatal hepatitis B vaccination program, The Netherlands, 1982–1992: protective efficacy and long-term immunogenicity. Vaccine 15, 1624–1630 (1997).

    Article  CAS  Google Scholar 

  28. Michel, M.L. et al. Induction of anti-human immunodeficiency virus (HIV) neutralizing antibodies in rabbits immunized with recombinant HIV-hepatitis B surface antigen particles. Proc. Natl. Acad. Sci. USA 85, 7957–7961 (1988).

    Article  CAS  Google Scholar 

  29. Arap, W. et al. Steps toward mapping the human vasculature by phage display. Nat. Med. 8, 121–127 (2002).

    Article  CAS  Google Scholar 

  30. Yoshida, J., Mizuno, M. & Yagi, K. Efficient transfection of human interferon-β gene to human glioma cells by means of cationic multilamellar liposomes coupled with a monoclonal antibody. J. Neurooncol. 19, 269–274 (1994).

    Article  CAS  Google Scholar 

  31. Sonveaux, N., Thines, D. & Ruysschaert, J.M. Characterization of the HBsAg particle lipid membrane. Res. Virol. 146, 43–51 (1995).

    Article  CAS  Google Scholar 

  32. Murayama, Y. et al. Cell-specific expression of the diphtheria toxin A-chain coding sequence under the control of the upstream region of the human α-fetoprotein gene. J. Surg. Oncol. 70, 145–149 (1999).

    Article  CAS  Google Scholar 

  33. Inoue, S., Ogawa, H., Yasuda, K., Umesono, K. & Tsuji, F.I. A bacterial cloning vector using a mutated Aequorea green fluorescent protein as an indicator. Gene 189, 159–162 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Grants-in-Aid from the Japan Science and Technology Corporation (Research Fund for Patenting), the Ministry of Education, Culture, Sports, Science and Technology, Japan (nos. 13558110, 13218080, 15025240; the 21st century Center of Excellence program), TERUMO Life Science Foundation, Kowa Life Science Foundation, Naito Memorial Foundation (to S.K.), the Fund for Scientific Research (FWO, Belgium) and a Vlaams Interuniversitair Instituut voor Biotechnologie grant from the Flemish Government (to M.K.L.C. and T.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun'ichi Kuroda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Iwasaki, Y., Tada, H. et al. Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol 21, 885–890 (2003). https://doi.org/10.1038/nbt843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing