Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

The Two Major Xylanases from Trichoderma Reesei: Characterization of Both Enzymes and Genes

Abstract

As a first step to exploit the potential of Trichoderma reesei to produce hemicellulases, we have purified two endo-β-1,4-xylanases (1,4-β-D-xylan xylanohydrolase, EC 3.2.1.8) and cloned their genes. The enzymes were isolated from culture filtrates of T. reesei C 30 grown on xylan as a carbon source, using two steps of cation exchange chromatography. They exhibited molecular weights of 19 (XYN I) and 21 (XYN II) kD, and isoelectric points of 5.2 and 9.0, respectively. These enzymes differed in their pH optimum for activity and affinity for xylan, and accounted for more than 90% of the total xylanolytic activity of the fungus. The purified enzymes were subjected to N-terminal sequence analysis, and after cleavage with trypsin and endoproteinase Glu-C the resulting peptides were sequenced. Oligonucleotides based on these sequences were used to clone gene fragments via PCR, and these were used as probes to isolate full-length copies of xyn1 and xyn2 from a lambda gene bank of T. reesei. The products of xyn1 and xyn2 share considerable homology, but the enzyme encoded by xyn2 appears to more closely resemble several other bacterial and fungal xylanases than does that of xyn1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Biely, P. 1985. Microbial xylanolytic systems. Trends in Biotechnol. 3: 286–290.

    Article  CAS  Google Scholar 

  2. Viikari, L., Ranua, M., Kantelinen, A., Sundqusit, J. and Linko, M. 1986. Bleaching with enzymes, p. 67–69. In: Proc. 3rd Internal. Conf. Biotechnol. in the Pulp and Paper Ind., Stockholm.

    Google Scholar 

  3. Chauvet, J.-M., Comtat, J. and Noe, P. 1987. Assistance in bleaching of never-dried pulps by the use of xylanases, consequences on pulp properties, Vol. II: 325–327. In: Proc. 4th Int. Congr. Wood and Pulping Chemistry, Paris.

    Google Scholar 

  4. Wong, K.K.Y., Tan, L.U.L. and Saddler, J.N. 1988. Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52: 305–317.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Poutanen, K., Rättö, M., Puls, J. and Viikari, L. 1987. Evaluation of different microbial xylanolytic systems. J. Biotechnol. 6: 49–60.

    Article  CAS  Google Scholar 

  6. Huang, L., Hseu, T.-H. and Wey, T.T. 1991. Purification and characterization of an endoxylanase from Trichoderma koningii G-39. Biochem. J. 278: 329–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dean, J.F.D. and Anderson, J.D. 1991. Ethylan biosynthesis inducing xylanase. II. Purification and physical characterization of the enzyme produced by Trichoderma viride. Plant Physiol. 95: 316–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan, L.U.L., Wong, K.K.Y., Yu, E.K.C. and Saddler, J.N. 1985. Purification and characterization of two β-D-xylanases from Trichoderma harzianum. Enzyme Microb. Technol. 7: 425–430.

    Article  CAS  Google Scholar 

  9. Lappalainen, A. 1986. Purification and characterization of xylanolytic enzymes from Trichoderma reesei. Biotechnol. Appl. Biochem. 8: 437–448.

    CAS  Google Scholar 

  10. John, M. and Schmidt, J. 1988. Xylanases and beta-xylosidase of Trichoderma lignorum. Meth. Enzymol. 168: 662–671.

    Article  Google Scholar 

  11. Rose, D.R., Birnbaum, G.I., Tan, L.U.L. and Saddler, J.N. 1987. Crystallization and preliminary X-ray diffraction study of a xylanase from Trichoderma harzianum. J. Mol. Biol. 194: 755–756.

    Article  CAS  PubMed  Google Scholar 

  12. Ujiie, M., Roy, C. and Yaguchi, M. 1991. Low-molecular weight xylanase from Trichoderma viride. Appl. Environ. Microbiol. 57: 1860–1862.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Royer, J.C. and Nakas, J.P. 1991. Purification and characterization of two xylanases from Trichoderma longibrachiatum. Eur. J. Biochem. 202: 521–529.

    Article  CAS  PubMed  Google Scholar 

  14. Yaguchi, M., Roy, C., Ujiie, M., Watson, D.C. and Wakarchuk, W. 1992. Amino acid sequence of the low molecular weight xylanase from Trichoderma viride. In: Xylans and Xylanases. J. Visser (Ed.). Elsevier, Amsterdam. In press.

    Google Scholar 

  15. Yaguchi, M., Roy, C., Watson, D.C., Rollin, F., Tan, L.U.L., Senior, D.J. and Saddler, N. 1992. The amino acid sequence of the 20 kD xylanase from Trichoderma harzianum E58. Ibid.

  16. Teeri, T.T., Lehtovaara, P., Kauppinnen, S., Salovuori, I. and Knowles, J.K.C. 1987. Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51: 43–52.

    Article  CAS  PubMed  Google Scholar 

  17. Penttilä, M., Lehtovaara, P., Nevalainen, H., Bhikhabhai, R. and Knowles, J.K.C. 1986. Homology between the cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45: 253–263.

    Article  PubMed  Google Scholar 

  18. Chen, C.M., Gritzali, M. and Brown, R.D. Jr . 1987. Nucleotide sequence and deduced primary structure of cellobiohydrolase II of Trichoderma reesei. Bio/Technology 5: 274–278.

    Article  CAS  Google Scholar 

  19. Arsdell, J.N., Van Kwock, S., Schweickart, V.L., Ladner, M.B., Gelfand, D.H. and Innis, M.A. 1987. Cloning, characterization and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei. Bio/Technology 5: 60–64.

    Google Scholar 

  20. Saloheimo, M., Lehtovaara, P., Penttilä, M., Teeri, T.T., Stahlberg, J., Johansson, G., Petterson, G.L., Claeyssens, M., Tomme, P. and Knowles, J.K.C. 1988. EG III, a new endoglucanase from Trichoderma reesei: characterization of both gene and enzyme. Gene 63: 11–21.

    Article  CAS  PubMed  Google Scholar 

  21. Eckhardt, T., Strickler, J., Gorniak, L., Burnett, W.V. and Fare, L. 1987. Characterization of the promoter, signal sequence and amino terminus of a secreted β-galactosidase from Streptomyces lividans. J. Bacteriol. 169: 4249–4256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barnett, C.C., Berka, R.M. and Fowler, T. 1991. Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Bio/Technology 9: 562–567.

    CAS  Google Scholar 

  23. Von Heijne, G. 1984. How signal sequences maintain cleavage specificity. J. Mol. Biol. 173: 243–251.

    Article  CAS  PubMed  Google Scholar 

  24. Von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucl. Acids Res. 14: 4683–4690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gavel, Y. and Von Heijne, G. 1990. Sequence differences between glycosylated and nonglycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Engineering 3: 433–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lehle, L. 1992. Protein glycosylation in yeast. Antonie Van Lleuwenhoek 61: 133–134.

    Article  CAS  Google Scholar 

  27. Calmes, T.P.G., Martin, E., Durand, H. and Tiraby, G. 1991. Proteolytic events in processing of secreted proteins in fungi. J. Biotechnol. 17: 51–56.

    Article  Google Scholar 

  28. Shareck, F., Roy, C., Yaguchi, M., Morosoli, R. and Kluepfel, D. 1991. Sequences of three genes specifying xylanases in Streptomyces lividans. Gene 107: 75–82.

    Article  CAS  PubMed  Google Scholar 

  29. Zappe, H., Jones, W.A. and Woods, D.R. 1990. Nucleotide sequence of a Clostridium acetobutylicum P262 xylanase gene (xynB). Nucl. Acids Res. 18: 2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fukusaki, F., Panbangrcd, W., Shinmyo, A. and Okada, H. 1984. The complete nucleotide sequence of the xylanase (xynA) of Bacillus pumilus. FEBS Letts. 171: 197–201.

    Article  CAS  Google Scholar 

  31. Paice, M.G., Bourbonnais, R., Desrochers, M., Jurasek, L. and Yaguchi, M. 1986. A xylanase gene from Bacillus subtilis: nucleotide sequence and comparison with B. pumilus gene. Arch. Microbiol. 144: 201–202.

    CAS  Google Scholar 

  32. Yang, R.C.A., MacKenzie, C.R. and Narang, S.A. 1988. Nucleotide sequence of a Bacillus circulams xylanase gene. Nucl. Acids Res. 16: 7187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chou, P.Y. and Fasman, G.D. 1978. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47: 45–145.

    CAS  PubMed  Google Scholar 

  34. Garnier, J., Osguthorpe, D.J. and Robson, B. 1978. Analysis of accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120: 97–120.

    Article  CAS  PubMed  Google Scholar 

  35. Bissett, J. 1984. A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can. J. Bot. 62: 924–931.

    Article  Google Scholar 

  36. Mandels, M. and Andreotti, R.E. 1978. The cellulose to cellulase fermentation. Proc. Biochem. 6: 6–13.

    Google Scholar 

  37. Laemrnli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

  38. Miller, G.L. 1959. Use of the dinitro salicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  39. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  PubMed  Google Scholar 

  40. Kalkkinen, N. and Tilgrnann, C. 1988. A gas-pulsed liquid-phase sequence constructed from a Beckman 890 instrument by using applied systems delivery and cartridge blocks. J. Prot. Chem. 7: 242–243.

    Google Scholar 

  41. Morrisey, W.N. 1981. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal. Biochem. 117: 307–310.

    Article  Google Scholar 

  42. Gruber, F., Visser, J., Kubicek, C.P. and De Graaff, I.H. 1990. The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG negative strain. Curr. Genet. 18: 71–76.

    Article  CAS  PubMed  Google Scholar 

  43. Morawetz, R., Gruber, F., Messner, R. and Kubicek, C.P. 1992. Presence, transcription and translation of cellobiohydrolase genes in several Trichoderma species. Curr. Genet. 21: 31–36.

    Article  CAS  Google Scholar 

  44. Teeri, T.T., Kumar, V., Lehtovaara, P. and Knowles, J.K.C. 1987. Construction of cDNA libraries by blunt-end ligation: high frequency cloning of long cDNAs from filamentous fungi. Anal. Biochem. 164: 60–67.

    Article  CAS  PubMed  Google Scholar 

  45. Sambrook, J., Frisch, E.F. and Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York.

    Google Scholar 

  46. Gruber, F., Visser, J., Kubicek, C.P. and De Graaff, L. 1990. Cloning of the Trichoderma reesei pyrG gene and its use as a homologous marker for a high-frequency transformation system. Curr. Genet. 18: 447–451.

    Article  CAS  Google Scholar 

  47. Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Törrönen, A., Mach, R., Messner, R. et al. The Two Major Xylanases from Trichoderma Reesei: Characterization of Both Enzymes and Genes. Nat Biotechnol 10, 1461–1465 (1992). https://doi.org/10.1038/nbt1192-1461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1192-1461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing