Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors

Abstract

Delivery of small interfering RNAs (siRNAs) into cells is a key obstacle to their therapeutic application. We designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells. The fusion protein (F105-P) was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody. siRNAs bound to F105-P induced silencing only in cells expressing HIV-1 envelope. Additionally, siRNAs targeted against the HIV-1 capsid gene gag, inhibited HIV replication in hard-to-transfect, HIV-infected primary T cells. Intratumoral or intravenous injection of F105-P-complexed siRNAs into mice targeted HIV envelope-expressing B16 melanoma cells, but not normal tissue or envelope-negative B16 cells; injection of F105-P with siRNAs targeting c-myc, MDM2 and VEGF inhibited envelope-expressing subcutaneous B16 tumors. Furthermore, an ErbB2 single-chain antibody fused with protamine delivered siRNAs specifically into ErbB2-expressing cancer cells. This study demonstrates the potential for systemic, cell-type specific, antibody-mediated siRNA delivery.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: F105-P binds and delivers siRNAs only into HIV env-expressing cells.
Figure 2: GFP-siRNA delivered by F105-P reduces EGFP expression only in HeLa-GFP cells transfected with HIV λHXB3.
Figure 3: F105-P complexed with gag siRNA inhibits HIV production in infected primary CD4 cells.
Figure 4: F105-P delivers c-myc, MDM2 and VEGF siRNAs, silences gene expression, and inhibits tumor proliferation only in B16 melanoma cells expressing HIV env.
Figure 5: Intratumoral or intravenous injection of siRNAs complexed with F105-P delivers siRNAs only into env-bearing B16 tumors to suppress tumor growth.
Figure 6: A single-chain antibody fragment against ErbB2 fused to a protamine fragment specifically and effectively delivers siRNAs only to ErbB2+ breast cancer cells.

Similar content being viewed by others

References

  1. Dykxhoorn, D.M. & Lieberman, J. The Silent Revolution: RNA interference as basic biology, research tool and therapeutic. Annu. Rev. Med. 56, 401–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Kariko, K., Bhuyan, P., Capodici, J. & Weissman, D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172, 6545–6549 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 11, 50–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Chen, S.Y., Khouri, Y., Bagley, J. & Marasco, W.A. Combined intra- and extracellular immunization against human immunodeficiency virus type 1 infection with a human anti-gp120 antibody. Proc. Natl. Acad. Sci. USA 91, 5932–5936 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, S.Y., Zani, C., Khouri, Y. & Marasco, W.A. Design of a genetic immunotoxin to eliminate toxin immunogenicity. Gene Ther. 2, 116–123 (1995).

    CAS  PubMed  Google Scholar 

  9. Chen, T.H. et al. Structure of pp32, an acidic nuclear protein which inhibits oncogene- induced formation of transformed foci. Mol. Biol. Cell 7, 2045–2056 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, X., Stuckert, P., Bosch, I., Marks, J.D. & Marasco, W.A. Single-chain antibody-mediated gene delivery into ErbB2-positive human breast cancer cells. Cancer Gene Ther. 8, 555–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Layzer, J.M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Song, E. et al. Sustained Small Interfering RNA-Mediated Human Immunodeficiency Virus Type 1 Inhibition in Primary Macrophages. J. Virol. 77, 7174–7181 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slamon, D.J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Sorensen, D.R., Leirdal, M. & Sioud, M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J. Mol. Biol. 327, 761–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, X. et al. Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J. Biol. Chem. 279, 10677–10684 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Massaro, D., Massaro, G.D. & Clerch, L.B. Noninvasive delivery of small inhibitory RNA and other reagents to pulmonary alveoli in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L1066–L1070 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. McCaffrey, A.P. et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol. 21, 639–644 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. McCaffrey, A.P. et al. RNA interference in adult mice. Nature 418, 38–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hamar, P. et al. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 101, 14883–14888 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Contreras, J.L. et al. Caspase-8 and caspase-3 small interfering RNA decreases ischemia/reperfusion injury to the liver in mice. Surgery 136, 390–400 (2004).

    Article  PubMed  Google Scholar 

  22. Minakuchi, Y. et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 32, e109 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schiffelers, R.M. et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32, e149 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hassani, Z. et al. Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J. Gene Med. (2004).

  25. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. USA 101, 8676–8681 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y. et al. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res. 10, 3667–3677 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Hung, L. & Kumar, V. Specific inhibition of gene expression and transactivation functions of hepatitis B virus X protein and c-myc by small interfering RNAs. FEBS Lett. 560, 210–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Reich, S.J. et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vis. 9, 210–216 (2003).

    CAS  PubMed  Google Scholar 

  29. Brody, J.R. et al. pp32 reduction induces differentiation of TSU-Pr1 cells. Am. J. Pathol. 164, 273–283 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stewart, S.A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muthumani, K. et al. Novel engineered HIV-1 East African Clade-A gp160 plasmid construct induces strong humoral and cell-mediated immune responses in vivo. Virology 314, 134–146 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant AI-056900 (J.L.), a Leukemia and Lymphoma Society fellowship (D.C.), amFAR scholar award (S.-K.L.), and Harvard CFAR scholar award (D.P.). We thank Manjunath N., Dong Zhang and Lianfa Shi for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Lieberman.

Ethics declarations

Competing interests

Authors have applied for a patent based on this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, E., Zhu, P., Lee, SK. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23, 709–717 (2005). https://doi.org/10.1038/nbt1101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing