Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae

Abstract

The ice-nucleation protein (Inp) is a glycosyl phosphatidylinositol-anchored outer membrane protein found in some Gram-negative bacteria. Using Pseudomonas syringae Inp as an anchoring motif, we investigated the functional display of a foreign protein, Zymomonas mobilis levansucrase (LevU), on the surface of Escherichia coli. The cells expressing Inp-LevU were found to retain both the ice-nucleation and whole-cell levansucrase enzyme activities, indicating the functional expression of Inp-LevU hybrid protein on the cell surface. The surface localization was further verified by immunofluorescence microscopy, fluorescence-activated cell sorting flow cytometry and immunogold electron microscopical examination. No growth inhibition or changes in the outer membrane integrity were observed upon the induction of fusion protein synthesis. Viability of the cells was also maintained over 48 hours in the stationary phase. Surface-displayed levansucrases were found to be resistant to the externally added proteases unless the cells were treated with EDTA. When the levansucrase-displayed cells were used as the enzyme source, levan (44 g/L) was efficiently synthesized from sucrose (130 g/L) with 34% (wt/wt) conversion yield, generating glucose (65 g/L) as a by-product.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Georgiou, G., Stathopoulos, C., Daugherty, P.S., Nayak, A.R., Iverson, B.L., and Curtiss, R. 1997. Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines. Nature Biotechnology 15: 29–34.

    Article  CAS  Google Scholar 

  2. Fischetti, V.A., Medaglini, D., Oggioni, M., and Pozzi, G. 1993. Expression of foreign proteins on Gram-positive commensal bacteria for mucosal vaccine delivery. Curr. Opin. Biotechnol. 4: 603–610.

    Article  CAS  Google Scholar 

  3. Ståhl, S. and Uhlén, M. 1997. Bacterial surface display: trends and progress. Trends Biotechnol. 15: 185–192.

    Article  Google Scholar 

  4. Charbit, A., Molla, A., Saurin, W., and Hofnung, M. 1988. Versatility of a vector for expressing foreign polypeptides at the surface of Gram-negative bacteria. Gene 70: 181–189.

    Article  CAS  Google Scholar 

  5. Agterberg, M., Adriaanse, H., van Bruggen, A., Karperien, M., and Tommassen, J. 1990. Outer membrane PhoE protein of Escherichia coli K-12 as an exposure vector: possibilities and limitations. Gene 88: 37–45.

    Article  CAS  Google Scholar 

  6. Francisco, J.A., Earhart, C.F., and Georgiou, G. 1992. Transport and anchoring of β-lactamase to the external surface of Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 2713–2717.

    Article  CAS  Google Scholar 

  7. Fuchs, P., Breitling, F., Dübel, S., Seehaus, T., and Little, M. 1991. Targeting recombinant antibodies to the surface of Escherichia coli: Fusion to a peptidoglycan associated lipoprotein. Bio/Technology 9: 1369–1372.

    Article  CAS  Google Scholar 

  8. Taylor, I.M., Harrison, J.L., Timmis, K.N., and O'Connor, C.D. 1990. The TraT lipoprotein as a vehicle for the transport of foreign antigenic determinants to the cell surface of Escherichia coli K12: structure-function relationships in the TraT protein. Mol. Microbiol. 4: 1259–1268.

    Article  CAS  Google Scholar 

  9. Hansson, M., Ståhl, S., Nguyen, T.N., Bächi, T., Robert, A., Binz, H. et al. 1992. Expression of recombinant proteins on the surface of the coagulase-negative bacterium Staphylococcus xylosus. J. Bacteriol. 174: 4239–4245.

    Article  CAS  Google Scholar 

  10. Piard, J.C., Hautefort, I., Fischetti, V.A., Ehrlich, D., Fons, M., and Gruss, A. 1997. Cell wall anchoring of the Strepococcus pyogenes M6 protein in various lactic acid bacteria. J. Bacteriol. 179: 3068–3072.

    Article  CAS  Google Scholar 

  11. Sleytr, U.B. and Sára, M. 1997. Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol. 15: 20–26.

    Article  CAS  Google Scholar 

  12. Schreuder, M.P., Mooren, A.T.A., Toschka, H.Y., Theo Verrips, C., and Klis, F.M. 1996. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115–120.

    Article  CAS  Google Scholar 

  13. Steidler, L., Remaut, E., and Fiers, W. 1993. LamB as a carrier molecule for the functional exposition of IgG-binding domains of the Staphylococcus aureus Protein A at the surface of Escherichia coli K12. Mol. Gen. Genet. 236: 187–192.

    Article  CAS  Google Scholar 

  14. Georgiou, G., Stephens, D.L., Stathopoulos, C., Poetschke, H.L., Mendenhall, J., and Earhart, C.F. 1996. Display of β-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp'-OmpA'-β-lactamase fusions. Protein Eng. 9: 239–247.

    Article  CAS  Google Scholar 

  15. Maurer, J., Jose, J., and Meyer, T.F. 1997. Autodisplay: One-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J. Bacteriol. 179: 794–804.

    Article  CAS  Google Scholar 

  16. Kozloff, L.M., Turner, M.A., and Arellano, F. 1991. Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J. Bacteriol. 173: 6528–6536.

    Article  CAS  Google Scholar 

  17. Ferguson, M.A.J. and Williams, A.F. 1988. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu. Rev. Biochem. 57: 285–320.

    Article  CAS  Google Scholar 

  18. Wolber, P.K. 1993. Bacterial ice nucleation. Adv. Microb. Physiol. 34: 203–235.

    Article  CAS  Google Scholar 

  19. Nemecek-Marshall, M., LaDuca, R., and Fall, R. 1993. High-level expression of ice nuclei in a Pseudomonas syringae strain is induced by nutrient limitation and low temperature. J. Bacteriol. 175: 4062–4070.

    Article  CAS  Google Scholar 

  20. Green, R.L., Corotto, L.V., and Warren, G.J. 1988. Deletion mutagenesis of the ice nucleation gene from Pseudomonas syringae S203. Mol. Gen. Genet. 215: 165–172.

    Article  CAS  Google Scholar 

  21. Lindow, S.E., Lahue, E., Govindarajan, A.G., Panopoulos, N.J., and Gies, D. 1989. Localization of ice nucleation activity and the iceC gene product in Pseudomonas syringae and Escherichia coli. Mol. Plant-Microbe Interact. 2: 262–272.

    Article  CAS  Google Scholar 

  22. Drainas, C., Vartholomatos, G., and Panopoulos, N.J. 1995. The ice nucleation gene from Pseudomonas syringae as a sensitive gene reporter for promotor analysis in Zymomonas mobilis. Appl. Environ. Microbiol. 61: 273–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Watanabe, M. and Arai, S. 1994. Bacterial ice-nucleation activity and its application to freeze concentration of fresh foods for modification of their properties. J. Food Eng. 22: 453–473.

    Article  Google Scholar 

  24. Suzuki, M. and Chatterton, N.J. 1993. Science and technology of fructans. CRC Press, Boca Raton, FL.

    Google Scholar 

  25. Song, K.B., Joo, H.K., and Rhee, S.K. 1993. Nucleotide sequence of levansu-crase gene (JevU) of Zymomonas mobilis ZM1 (ATCC10988). Biochim. Biophys. Acta 1173: 320–324.

    Article  CAS  Google Scholar 

  26. Song, K.B. and Rhee, S.K. 1994. Enzymatic synthesis of levan by Zymomonas mobilis levansucrase overexpressed in Escherichia coli. Biotechnol. Lett. 16: 1305–1310.

    CAS  Google Scholar 

  27. Keith, J., Wiley, B., Ball, D., Arcidiacono, S., Zorfass, D., Mayer, J., and Kaplan, D. 1991. Continuous culture system for production of biopolymer levan using Erwinia herbicola. Biotechnol. Bioeng. 38: 557–560.

    Article  CAS  Google Scholar 

  28. Wolber, P.K., Deininger, C.A., Southworth, M.W., Vandekerckhove, J., Montagu, M.V., and Warren, G.J. 1986. Identification and purification of a bacterial ice nucleation protein. Proc. Natl. Acad. Sci. USA 83: 7256–7260.

    Article  CAS  Google Scholar 

  29. Kwak, J.W., Seo, Y.G., Song, K.B., and Rhee, S.K. 1996. An enzyme-linked immunoassay for the levansucrase of Zymomonas mobilis using specific antibodies produced against the cloned enzyme. Biotechnol. Tech. 10: 127–132.

    Article  CAS  Google Scholar 

  30. Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56: 395–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Arnon, R. 1986. Synthetic peptides as the basis for vaccines. TIBS 11: 521–524.

    CAS  Google Scholar 

  32. Bommarius, A.S. 1993. Biotransformations and enzyme reactors, pp.427–466 in Biotechnology. Rehm, H.J., Reed, G., Pühler, A., and Stadler, P. (eds.). VCH Verlagsgesellschaft mbH, Weinheim, Germany.

    Google Scholar 

  33. Francisco, J.A., Stathopoulos, C., Anthony, R., Warren, J., Kilburn, D.G., and Georgiou, G. 1993. Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Bio/Technology 11: 491–495.

    CAS  PubMed  Google Scholar 

  34. Murai, T., Ueda, M., Yamamura, M., Atomi, H., Shibasaki, Y., Kamasawa, N. et al. 1997. Construction of a starch-utilizing yeast by cell surface engineering. Appl. Environ. Microbiol. 63: 1362–1366.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Richins, R.D., Kaneva, I., Mulchandani, A., and Chen, W. 1997. Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase Nature Biotechnology 15: 984–987.

    Article  CAS  Google Scholar 

  36. Strauch, K.L. and Beckwith, J. 1988. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc. Natl. Acad. Sci. USA 85(5): 1576–1580.

    Article  CAS  Google Scholar 

  37. Yanisch-Perron, C., Weira, J., and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp and pUC19 vectors. Gene 33: 103–119.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Gu Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, HC., Lebeault, JM. & Pan, JG. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat Biotechnol 16, 576–580 (1998). https://doi.org/10.1038/nbt0698-576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0698-576

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing