Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Runaway–Replication Plasmids as Tools to Produce Large Quantities of Proteins from Cloned Genes in Bacteria

Abstract

Here we review the properties and uses of runaway–replication vectors, a class of versatile plasmids discovered and developed in Escherichia coli. They are based on the IncFII plasmid, R1, in which an antisense RNA (CopA RNA) negatively controls the formation of a protein that is rate–limiting for replication. The copy number of the plasmid is determined by the balance between the rates of formation of CopA RNA and RepA mRNA. A small increase in the rate of formation of the latter drastically reduces the rate of formation of CopA RNA due to convergent transcription, which may lead to a total loss of copy number control (runaway replication), resulting in massive DNA amplification, and plasmid copy numbers up to 1000 per genome. Since this amplification occurs in the presence of protein synthesis, the protein that is encoded by a cloned gene can also be amplified, and may constitute 10–50% of the total protein.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fill, N.P., Bendiak, D., Collins, J. and Friesen, J.D. 1979 Fxpression of Escherichia coli ribosomal protein and RNA polymerase genes cloned on plasmids. Mol. Gen. Genet. 173: 39–50.

    Article  Google Scholar 

  2. Little, J.W. 1979 Construction and characterization of a plasmid coding for a fragment of the Escherichia coli recA protein. Mol. Gen. Genet. 177: 13–22.

    Article  CAS  PubMed  Google Scholar 

  3. Shimatake, H. and Rosenberg, M. 1981 Purified lambda regulatory protein cII positively activates promoters for lysogenic development. Nature 292: 128–132.

    Article  CAS  Google Scholar 

  4. Uhlin, B.E., Molin, S., Gustafsson, P. and Nordström, K. 1979 Plasmids with temperature dependent copy number for amplification of cloned genes and their products. Gene 16: 91–106.

    Article  Google Scholar 

  5. Sninsky, J.J., Uhlin, B.E., Gustafsson, P. and Cohen, S.N. 1981 Construction and characterization of a novel two plasmid system for accomplishing temperature regulated, amplified expression of cloned adventitious genes in Escherichia coli. Gene 16: 275–286.

    Article  CAS  PubMed  Google Scholar 

  6. Uhlin, B.E., Schweickart, V. and Clark, A.J. 1983 New runaway replication plasmid vectors and suppression of runaway replication by novobiocin. Gene 22: 255–265.

    Article  CAS  PubMed  Google Scholar 

  7. Nordström, K., Molin, S. and Light, J. 1984 Control of replication of bacterial plasmids Genetics, molecular biology, and physiology of the plasmid R1 system. Plasmid 12: 71–90.

    Article  PubMed  Google Scholar 

  8. Arai, H. and Masai, K.-I. 1987 RepA and DnaA proteins are required for initiation of R1 plasmid replication in vitro and interact with the oriR sequence. Proc. Natl. Acad. Sci. USA. 84: 4781–4785.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nordström, K. 1985 Control of plasmid replication Theoretical considerations and practical solutions. p. 189–214 In: Plasmids in Bacteria. D. Helinski et al. (Eds.). Plenum Press, NY.

    Chapter  Google Scholar 

  10. Nordström, K. 1990. Control of plasmid replication—How do DNA iterons set the replication frequency? Cell 63: 1121–1124.

    Article  PubMed  Google Scholar 

  11. Kollek, R., Oertel, W. and Goebel, W. 1978. Isolation and characterization of the minimal fragment required for autonomous replication of a copy mutant (pKN102) of the antibiotic resistance factor R1. Mol. Gen. Genet. 162: 51–58.

    Article  CAS  PubMed  Google Scholar 

  12. Persson, C., Wagner, E.G.H. and Nordström, K. 1988. Control of replication of plasmid R1: Kinetics of in vitro interaction between the antisense RNA, CopA, and its target CopT. EMBO J. 7: 3279–3288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gustafsson, P. and Nordström, K. 1980. Control of replication of plasmid R1. Kinetics of replication in shifts between copy number levels. J. Bacteriol. 141: 106–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nielsen, P.F. and Molin, S. 1984. How the R1 replication control system responds to copy number deviations. Plasmid 11: 264–267.

    Article  CAS  PubMed  Google Scholar 

  15. Light, J., Riise, E. and Molin, S. 1985. Transcription and its regulation in the basic replicon region of plasmid R1. Mol. Gen. Genet. 198: 503–508.

    Article  CAS  PubMed  Google Scholar 

  16. Molin, S. Stougaard, P., Light, J. Nordström, M. and Nordstrom, K. 1981. Isolation and characterization of new copy mutants of plasmid R1 and identification of a polypeptide involved in copy number control. Mol. Gen. Genet. 181: 123–130.

    Article  CAS  PubMed  Google Scholar 

  17. Nordström, M. and Nordström, K. 1985. Control of replication of FII plasmids: Comparison of the- basic replicons and of the copB systems of plasmids R100 and R1. Plasmid 13: 81–87.

    Article  PubMed  Google Scholar 

  18. Givskov, M., Stougaard, P., Light, J. and Molin, S. 1987. Identification and characterization of the mutations responsible for a runaway replication phenotype of plasmid R1. Gene 57: 203–211.

    Article  CAS  PubMed  Google Scholar 

  19. Gustafsson, P. and Nordström, K. 1978. Temperature dependent and amber copy mutants of plasmid R1drd.19 in Escherichia coli. Plasmid 1: 134–144.

    Article  CAS  PubMed  Google Scholar 

  20. Stougaard, P., Light, J. and Molin, S. 1982. Convergent transcription interferes with expression of the copy number control gene, copA, from plasmid R1. EMBO J. 1: 323–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blomberg, P., Wagner, E.G.H. and Nordström, K. 1990. Control of replication of plasmid R1: The duplex between the antisense RNA, CopA, and its target, CopT, is processed specifically in vivo and in vitro by Rnase III. EMBO J. 9: 2331–2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, H.-Y., Shyy, S., Wang, J.C. and Liu, L.F. 1988. Transcription generates positively and negatively supercoiled domains in the template. Cell 53: 433–440.

    Article  CAS  PubMed  Google Scholar 

  23. Tsao, Y.-P., Wu, H.-Y. and Liu, L.F. 1989. Transcription driven supercoiling of DNA: Direct biochemical evidence from in vitro studies. Cell 56: 111–118.

    Article  CAS  PubMed  Google Scholar 

  24. Higgins, N.P., Collier, D.A., Kilpatrick, M.W. and Krause, H.M. 1989. Supercoiling and integration host factor change the DNA conformation and alter the flow of convergent transcription in phage Mu. J. Biol. Chem. 264: 3035–3042.

    CAS  PubMed  Google Scholar 

  25. Mishra, R.K., Gopal, V. and Chatterji, D. 1990. Correlation between the DNA supercoiling and the initiation of transcription by Escherichia coli RNA polymerase in vitro role of the sequences upstream of the promoter region. FEBS Letts. 260: 273–276.

    Article  CAS  Google Scholar 

  26. Uhlin, B.E. and Nordström, K. 1978. A runaway replication mutant of plasmid Rldrd.19: Temperature dependent loss of copy number control. Mol. Gen. Genet. 165: 167–179.

    Article  CAS  PubMed  Google Scholar 

  27. Larsen, J.E.L., Gerdes, K., Light, J. and Molin, S. 1984. Low copy number plasmid cloning vectors amplifiable by derepression of an inserted foreign promoter. Gene 28: 45–54.

    Article  CAS  PubMed  Google Scholar 

  28. Uhlin, B.E. and Clark, A.J. 1981. Overproduction of the Escherichia coli recA protein without stimulation of its proteolytic activity. J. Bacteriol. 148: 386–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brodin, P., Drakenberg, T., Thulin, E., Forséil, S. and Grundström, T. 1987. Selective proton labeling of amino acids in deuterated bovine calbindin D9k. A way to simplify proton NMR spectra. Protein Eng. 2: 353–357.

    Article  Google Scholar 

  30. Greenberg, R., Gewain, K.M., Shaw, K.J. Frommer, B., Anagnost, J.A., Zurawski, S., Zurawski, G., Narula, S. and Leibowitz, P.J. 1988. Requirements for the high level expression of murine interleukin-3 cDNA in Escherichia coli. J. Ind. Microbiol. 3: 333–341.

    Article  CAS  Google Scholar 

  31. Shaar, C.J. and Smith, M.C. 1988. Topical pharmaceuticals for wound treatment containing insulin-like growth factor II. Eur. Pat. Appl. EP 280460.

  32. Patino, C., Sanchez, F. and Penalva, M.A. 1989. Low level expression in Escherichia coli of a fungal gene under the control of strong promoters. FEMS Microbiol. Letts. 58: 139–144.

    Article  CAS  Google Scholar 

  33. Hsiung, H.M., Schoner, R.G. and Schoner, B.E. 1985. Vectors for expressing bovine growth hormone derivatives. Eur. Pat. Appl. EP 1591213.

  34. Bartholomé De Belder, J., Nguyen-Distéhe, M., Houba Herin, N., Ghuysen, J.M., Maruyama, I.N., Hara, H., Hirota, Y. and Inouye, M. 1988. Overexpression, solubilization and refolding of a genetically engineered derivative of the penicillin- binding protein 3 of Escherichia coli. Mol. Microbiol. 2: 519–525.

    Article  Google Scholar 

  35. Ferreira, L.C.S., Schwarz, U., Keck, W., Charlier, P., Dideberg, O. and Ghuysen, J.-M. 1988. Properties and crystallization of a genetically engineered, water soluble derivative of pencilin binding protein 5 of Escherichia coli K12. Eur. J. Biochem. 171: 11–16.

    Article  CAS  PubMed  Google Scholar 

  36. Mizoguchi, J., Pitha, P.M. and Raj, N.B.K. 1985. Efficient expression in Escherichia coli of two species of human interferon-α and their hybrid molecules. DNA. 4: 221–232.

    Article  CAS  PubMed  Google Scholar 

  37. Bailey, J.E., Da Silva, N.A., Peretti, S.W., Seo, J.H. and Srienc, F. 1986. Studies of host plasmid interactions in recombinant microorganisms. Ann. N. Y. Acad. Sci. 469: 194–211.

    Article  CAS  PubMed  Google Scholar 

  38. Edler, C., Friehs, K. and Schuegerl, K. 1989. Cultivation strategies and product formation of bacteria with runaway-replication systems. DECHEMA Biotechnol. Conf. 3: 549–552.

    CAS  Google Scholar 

  39. Bentley, W.E. and Kampala, D.S. 1990. Optimal induction of protein synthesis in recombinant bacterial cultures. Ann. N. Y. Acad. Sci. 589: 121–138.

    Article  CAS  PubMed  Google Scholar 

  40. Seo, J.H. and Bailey, J.E. 1987. Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol. Bioeng. 27: 1668–1674.

    Article  Google Scholar 

  41. Nielsen, J. Pedersen, A.G., Strudsholm, K. and Villadsen, J. 1991. Modelling fermentations with recombinant microorganisms: Formulation of a structured model. Biotechnol. Bioeng. 37: 802–808.

    Article  CAS  PubMed  Google Scholar 

  42. diPasquantonio, V.M., Betenbaugh, M.J. and Dhurjati, P. 1987. Improvement of product yields by temperature shifting of Escherichia coli cultures containing plasmid pOU140. Biotechnol Bioeng. 29: 513–519.

    Article  CAS  PubMed  Google Scholar 

  43. Mizutani, S. Shinji, L.S., Shimizu, K., Matsubara, M., Soda, K. and Kobayashi, T. 1987. Mathematical modelling and response characterictics of runaway replication for temperature shift-up. Biotechnol. Prog. 3: 101–108.

    Article  CAS  Google Scholar 

  44. Seo, J.H., Srienc, F. and Bailey, J.E. 1985. Flow cytometry analysis of plasmid amplification in Escherichia coli. Biotechnol. Prog. 4: 181–188.

    Article  Google Scholar 

  45. Kim, H. B. and Kang, C. 1989. Selective overproduction of chloramphenicol acetyltransferase in the T7 expression system. Misaengmul Hakkoechi. 27: 317–322, via Chem. Abstr. 113: 72410h.

    CAS  Google Scholar 

  46. Elvin, C.M., Thompson, P.R., Argall, M.E., Hendry, P., Stamford, N.P.J., Lilley, P.E. and Dixon, N.E. 1990. Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene 87: 123–126.

    Article  CAS  PubMed  Google Scholar 

  47. Hiraga, S., Niki, H., Ogura. T.., Ichinose, C., Mori, H., Ezaki, B. and Jaffé, A. 1989. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J. Bacteriol. 171: 1496–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Niki, H., Jaffé, A., Imamura, R., Ogura, T. and Hiraga, S. 1991. The new gene mukB codes for a 177 kd protein with coiled-coil domains invoked in chromosome partitioning. EMBO J. 10: 183–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Uhlin, B.E. and Noidström, K. 1985. Preferential inhibition of plasmid replication in vivo by altered DNA gyrase activity in Escherichia coli. J. Bacteriol. 162: 855–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vericat, J.-A., Guerrero, R. and Barbé, J. 1988. Inhibition of the SOS response of Escherichia coli by the Ada protein. J. Bacteriol. 170: 1354–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Icho, T. 1988. Membrane bound phosphatases in Escherichia coli Sequence of the pgpB gene and dual subcellular localization of the pgpB product. J. Bacteriol. 170: 5117–5124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Korat, B., Motti, H. and Keck, W. 1991. Penicillin binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled over expression, and alterations in murein composition. Mol. Microbiol. 5: 675–684.

    Article  CAS  PubMed  Google Scholar 

  53. Uhlin, B.E., Norgren, M., Båga, M. and Normark, S. 1985. Adhesion to human cells by Escherichia coli lacking the major subunit of a digalacto side specific pilus-adhesin. Proc. Natl. Acad. Sci. USA 82: 1800–1804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bernander, R., Merryweather, A. and Nordström, K. 1989. Over initiation of replication of the Escherichia coli chromosome from an integrated runaway replication derivative of plasmid Rl. J. Bacteriol. 171: 674–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bernander, R. and Nordström, K. 1990. Chromosome replication does not trigger cell division in Escherichia coli. Cell 60: 365–374.

    Article  CAS  PubMed  Google Scholar 

  56. Nordström, K., Bernander, R. and Dasgupta, S. 1991. Analysis of the bacterial cell cycle using strains in which chromosome replication is controlled by plasmid Rl. Res. Microbiol. 142: 181–188.

    Article  PubMed  Google Scholar 

  57. Nordström, K., Bernander, R. and Dasgupta, S. 1991. The Escherichia coli cell cycle: One cycle or multiple independent processes that are coordinated? Mol. Microbiol. 5: 769–774.

    Article  PubMed  Google Scholar 

  58. Bernander, R., Dasgupta, S. and Nordström, K. 1991. The Echerichia coli cell cycle and the plasmid Rl replication cycle in the absence of the DnaA protein. Cell 64: 1145–1153.

    Article  CAS  PubMed  Google Scholar 

  59. Yasuda, S. and Takagi, T. 1983. Overproduction of Escherichia coli replication proteins by the use of runaway replication plasmids. J. Bacteriol. 154: 1153–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. O'Neill, G.P., Kilburn, D.G., Warren, A.J. and Miller, R.C. Jr. 1986. Overproduction from a cellulase gene with a high guanosinc-plus-cytosine content in Escherichia coli. Appl. Environmental Microbiol. 52: 737–743.

    CAS  Google Scholar 

  61. Nishimura, N., Komatsubara, S., Taniguchi, T. and Kisumi, M. 1987. Hyperproduction of aspartase of Escherichia coli K-12 by the use of a runaway plasmid vector. J. Biotechnol. 6: 31–40.

    Article  CAS  Google Scholar 

  62. Larsson, Å. 1984. Overproduction of the Bl subunit of ribonucleotide reductase with gene amplification. Acta Chem. Scand. B38: 905–907.

    Article  CAS  Google Scholar 

  63. Sjöberg, B.-M., Hahne, S., Karlsson, M., Jörnvall, H., Göransson, M. and Uhlin, B.E. 1986. Overproduction and purification of the B2 subunit of ribonucleotide reductase from Escherichia coli: J. Biol. Chem. 261: 5658–5662.

    PubMed  Google Scholar 

  64. Lundberg, L.G., Karlström, O.H., Nyman, P.O. and Neuhard, J. 1983. Isolation and characterization of the dut gene of Escherichia coli: I. Cloning in thermoinducible plasmids. Gene 22: 115–126.

    Article  CAS  PubMed  Google Scholar 

  65. Hoffmann, I., Widström, J. Zeppezauer, M. and Nyman, P.O. 1987. Overproduction and large scale preparation of deoxyuridine triphosphate nuclcotidohydrolase from Escherichia coli. Eur. J. Biochem. 164: 45–51.

    Article  CAS  PubMed  Google Scholar 

  66. Remaut, E., Tsao, H. and Fiers, W. 1983. Improved plasmid vectors with thermoinducible expression and temperature regulated runaway replication. Gene 22: 103–113.

    Article  CAS  PubMed  Google Scholar 

  67. Ishino, Y., Shinagawa, H., Makino, K., Tsunasawa, S., Sakiyama, F. and Nakata, A. 1986. Nucleotide sequence in the lig gene and primary structure of DNA ligase of Escherichia coli. Mol. Gen. Genet. 204: 1–7.

    Article  CAS  PubMed  Google Scholar 

  68. Sancar, A. and Rupp, W.D. 1983. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 33: 249–260.

    Article  CAS  PubMed  Google Scholar 

  69. Souza, L.M., Boone, T.C., Gabrilove, J., Lai, P.H. Zsebo, K.M., Murdock, D.C., Chazin,V.R., Bruszewski, J., Lu, H., Chen, K.K., Barendt, J., Platzer, E., Moore, M.-A.S., Mertelsmann, R. and Welte, K. 1986. Recombinant human granulocyte colony-stimulating factor: Effects on normal and leukemic myeloid cells. Science 232: 61–65.

    Article  CAS  PubMed  Google Scholar 

  70. Morino, T., Morita, M., Seya, K., Sukenaga, Y., Kato, K. and Nakamura, I. 1988. Construction of a runaway vector and its use for a high level expression of a cloned human Superoxide dismutase gene. Appl. Microbiol. Biotechnol. 28: 170–175.

    Article  CAS  Google Scholar 

  71. Carr, L.G., Skatrud, P.L., Scheetz II, M.E., Queener, S.W. and Ingolia, T.D. 1986. Cloning and expression of the isopenicillin N synthetase gene from Penicillium chrysogenum. Gene. 48: 257–266.

    Article  CAS  PubMed  Google Scholar 

  72. Carr, L.G., Ingolia, T.D., Queener, S.W. and Skatrud, P.L. 1987. Recombinant DNA expression vectors and DNA compounds that encode isopenicillin N synthase from Penicillium chrysogenum. Eur. Pat. Appl. EP 225128.

  73. Tomich, C.C., Olson, E.R. and Mott, F.E. 1988. Novel somatotropin encoding cDNA, and a system for manifacturing proteins using dual replicon plasmid and Escherichia coli mutants. PCT Int. Appl. WO 88 06,166.

  74. Kishimoto, F., Gomi, H., Kanaoka, M., Nakatani, T., Ito, A., Katoh, T., Agui, H., Sumida, S. and Ogino, S. 1986. Direct expression of urogastrone gene in Escherichia coli. Gene 45: 311–316.

    Article  CAS  PubMed  Google Scholar 

  75. Uhlin, B.E. and Nordström, K. 1977. R plasmid gene dosage effects in Escherichia coli K-12: Copy mutants of the R plasmid R1 drd-19. Plasmid 1: 1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordström, K., Uhlin, B. Runaway–Replication Plasmids as Tools to Produce Large Quantities of Proteins from Cloned Genes in Bacteria. Nat Biotechnol 10, 661–666 (1992). https://doi.org/10.1038/nbt0692-661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0692-661

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing