Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

High–Frequency Transformation of Penicillium Chrysogenum

Abstract

We report high–frequency transformation of penicillin–producing strains of Penicillium chrysogenum using plasmid vectors carrying the pyr4 gene of Neurospora crassa. Transformation to stable uracil independence is associated with acquisition of transforming DNA in high molecular forms that are not simple multimers of the vector. A transformant strain showed a fivefold higher orotidine–5′–monophosphate decarboxylase activity (coded by the pyr4 gene) than the wild type strain, indicating that the genes carried in the transforming vector are efficiently expressed in Penicillium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Demain, A.L. 1983. Biosynthesis of β-lactam antibiotics, p. 189–228 In: Antibiotics containing the β-lactam structure I. A. L. Demain and N. A. Solomon (eds.). Springer-Verlag International, New York.

    Google Scholar 

  2. Martín, J.F. and Liras, P. 1985. Biosynthesis of β-lactam antibiotics: Design and construction of overproducing strains. Trends Biotechnol. 3: 39–44.

    Article  Google Scholar 

  3. Queener, S.W., Ingolia, T.D., Skatrud, P.L., Chapman, J.L., and Kaster, K.R. 1985. A system for genetic transformation of Cephalosporium acremonium, p.268–472 In: Microbiology. D. Schlessinger (ed.). American Society for Microbiology, Washington D.C.

    Google Scholar 

  4. Skatrud, P.L., Samson, S., Carr, L., Ingolia, T.D., and Queener, S.W. 1986. Molecular Biology of Cephalosporium acremonium and Penicillium chrysogenum. In: Proceedings of the Genetics of Industrial Microorganisms. M. Alacevick (ed.). Yugoslavia. In press.

    Google Scholar 

  5. Samson, S.M., Belagaje, R., and Blankenship, D.T., et al. Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318: 191–194.

    Article  CAS  Google Scholar 

  6. Tilburn, J., Schazzocchio, C., Taylor, G.G., Zabicky-Zissman, J.H., Lockington, R.A., and Davies, R.W. 1984. Transformation by integration in Aspergillus nidulans. Gene 26: 205–221.

    Article  Google Scholar 

  7. Ballance, D.J., and Turner, G. 1985. Gene cloning in Aspergillus nidulans: Isolation of the isocitrate lyase gene (acuD). Mol. Gen. Genet. 202: 271–275.

    Article  Google Scholar 

  8. Yelton, M.M., Hamer, J.E., and Timberlake, W.E. 1984. Transformation of Aspergillus nidulans by using a trp plasmid. Proc. Natl. Acad. Sci. USA. 81: 1470–1474.

    Article  CAS  Google Scholar 

  9. Buxton, F.P., and Radford, A. 1983. Cloning of the structural gene for orotidine-5′-phosphate carboxylase of Neurospora crassa by expression in Escherichia coli. Mol. Gen. Genet. 190: 403–405.

    Article  CAS  Google Scholar 

  10. Ballance, D.J., and Turner, G. 1985. Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36: 321–331.

    Article  CAS  Google Scholar 

  11. Díez, B., Alvarez, E., Cantoral, J.M., Barredo, J.L., and Martín, J.F. 1987. Isolation and characterization of pyrG mutants of Penicillium chrysogenum by resistance to 5′-fluoroorotic acid. Current Genet. Submitted.

  12. Rose, M., Grisafi, P., and Botstein, D. 1984. Structure and function of the yeast URA3 gene: Expression in E. coli. Gene 29: 113–124.

    Article  CAS  Google Scholar 

  13. Botstein, D., and Davis, R.W. 1982. Principles and practice of recombinant DNA research with yeast, p. 607–635. In: Molecular Biology of the yeast Saccharomyces: Metabolism and Gene Expression. J. N. Strathern, E. W. Jones and J. R. Broach (eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  14. Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  15. Johnstone, I.L. 1985. Transformation of Aspergillus nidulans. Microbiol. Sci. 2: 307–311.

    CAS  PubMed  Google Scholar 

  16. Ballance, D.J., Buxton, F.P., and Turner, G. 1983. Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa. Biochem. Biophys. Res. Commun. 112: 284–289.

    Article  CAS  Google Scholar 

  17. John, M.A., and Peberdy, J.F. 1984. Transformation of Aspergillus nidulans using the argB gene. Enzyme Microbiol. Technol. 6: 386–389.

    Article  CAS  Google Scholar 

  18. Wernars, K., Goosen, T., Wennekes, L.M.J., Visser, J., Bos, C.J., Van Der Broek, H.W.J., Van Gorcom, R.F.M., Van Den Hondel, C.A.M.J.J., and Pouwels, P.H. 1985. Gene amplification in Aspergillus nidulans by transformation with vectors containing the amdS gene. Curr. Genet. 9: 361–368.

    Article  CAS  Google Scholar 

  19. Hinnen, A., Hicks, J.B., and Fink, G.R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75: 1929–1933.

    Article  CAS  Google Scholar 

  20. Stinchcomb, D.T., Thomas, M., Kelly, J., Selber, E.R., and Davis, R.W. 1980. Eucaryotic DNA segments capable of autonomous replication in yeast. Proc. Natl. Acad. Sci. USA. 77: 4559–4563.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantoral, J., Díez, B., Barredo, J. et al. High–Frequency Transformation of Penicillium Chrysogenum. Nat Biotechnol 5, 494–497 (1987). https://doi.org/10.1038/nbt0587-494

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0587-494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing