Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Genetic Control Systems of Escherichia Coli Can Confer Inducible Expression of Cloned Genes in Coryneform Bacteria

Abstract

We have investigated the use of the Escherichia coli lac and trp operator–represser and λ phage PRPL operator–cI represser systems to control expression of transformed genes in an amino acid–producing coryneform bacterium, Brevibacterium lactofermentum. We report here that functional lac, trp and ,cI repressers are produced in B. lactofermentum from lacI, trpR and cI857 genes containing their original promoters. Transcription of a chloram–phenicol acetyl transferase (CAT) gene with tac, lac, trp, or PR PL control regions could be blocked by three heterogeneous repressors. Addition of inducers or shift of cultivation temperature triggered marked derepression of CAT expression. These repressor–operator complexes may be useful as artificial “on/off switches” in the regulation of gene expression in the coryneform bacteria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yoshinaga, F. and Nakamori, S., 1983. Production of amino acids, p. 405–429, In: Aminoacids: Biosynthesis and genetic regulation, K. M. Herrmann and R. L. Somerville (eds. ). Addison Wesley Publishing Co, Reading, Mass.

    Google Scholar 

  2. Miwa, K., Matsui, K., Terabe, M., Ito, K., Ishida, M., Takagi, H., Nakamori, S. and Sano, K. 1985. Construction of novel shuttle vectors and a cosmid vector for the glutamic acid-producing bacteria Brevibactenum lactofermentum and Corynebacterium glutamicum. Gene 39:281–286.

    Article  CAS  Google Scholar 

  3. Takagi, H., Morinaga, Y., Miwa, K., Nakamori, S. and Sano, K. 1986. Versatile cloning vectors constructed with genes indigenous to a glutamic acid-producer, Brevibacterium lactofermentum. Agric. Biol. hem. 50:2597–2603.

    CAS  Google Scholar 

  4. Santamaria, R.I., Gil, J.A., Mesas, J.M. and Martìn, J.F. 1984. Characterization of an endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofermentum. J. Gen. Microbiol. 130:2237–2246.

    CAS  Google Scholar 

  5. Santamaria, R.I., Gil, J.A. and Martin, J.F. High-frequency transformation of Brevibacterium lactofermentum protoplasts by plasmid DNA.1985. J. Bacteriol. 162:463–467.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakamori, S., Ishida, M., Takagi, H., Ito, K., Miwa, K. and Sano, K. 1987. Improved l-threonine production by the amplification of the gene encoding homoserine dehydrogenase in Brevibacterium lactofermentum. Agric. Biol. Chem. 51:87–91.

    CAS  Google Scholar 

  7. Morinaga, Y., Takagi, H., Ishida, M., Miwa, K., Sato, T., Nakamori, S. and Sano, K. 1987. Threonine production by coexistence of cloned genes coding homoserine dehydrogenase and homoserine kinase in Brevibacterium lactofermentum. Agric. Biol. Chem. 51:93–100.

    CAS  Google Scholar 

  8. Sano, K., Ito, K., Miwa, K., and Nakamori, S. 1987. Amplification of the phosphoenol pyruvate carboxylase gene of Brevibacterium lactofermentum to improve amino acid production. Agric. Biol. Chem. 51:597–599.

    CAS  Google Scholar 

  9. Mateos Luis, M., Del Real, G., Aguilar, A. and Martin, J.F. 1987. Cloning and expression in Escherichia coli of the homoserine kinase (thrB) gene from Brevibacterium lactofermentum. Mol. Gen. Genet. 206:361–367.

    Article  Google Scholar 

  10. Del Real, G., Aguilar, A. and Martin, J.F. 1985. Cloning and expression of tryptophan genes from Brevibacterium lactofermentum in Escherichia coli. Biochem. Biophys. Res. Commun. 133:1013–1019.

    Article  CAS  Google Scholar 

  11. Yamaguchi, R., Terabe, M., Miwa, K., Tsuchiya, M., Takagi, H., Morinaga, Y., Nakamori, S., Sano, S., Momose, H. and Yamazaki, A. 1986. Determination of the complete nucleotide sequence of Brevibacterium lactofermentum plasmid pAM330 and analysis of its genetic information. Agric. Biol. Chem. 50:2771–2778.

    CAS  Google Scholar 

  12. Sano, K. and Matsui, K. 1987. Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic acid-producing bacterium. Gene 53:191–200.

    Article  CAS  Google Scholar 

  13. Morinaga, Y., Tsuchiya, M., Miwa, K. and Sano, K. 1987. Expression of Eschenchia coli promoters in Brevibacterium lactofermentum using the shuttle vector pEB003. J. Biotechnol. 5:305–302.

    Article  CAS  Google Scholar 

  14. Miwa, K., Matsui, H., Terabe, M., Nakamori, S., Sano, K. and Momose, H. 1984. Cryptic plasmids in glutamic acid-producing bacteria. Agric. Biol. Chem. 48:2901–2903.

    CAS  Google Scholar 

  15. Masui, Y., Coleman, J. and Inouye, M. 1983. Multipurpose expression cloning vehicles in Escherichia coli, p. 15–32. In: Experimental manipulation of gene expression, M. Inouye (ed.). Academic Press, New York.

    Chapter  Google Scholar 

  16. Itoh, M., Aiba, H., Inokuchi, K., Mizuno, T., Nagahari, K., Munakata, K. and Mizushima, S. 1986. A controllable expression-secretion vector constructed from the multiple trp promoter-operator, the signal peptide region of the ompF gene and the trpR gene in Eschenchia coli. Agric. Biol. Chem. 50:1295–1302.

    CAS  Google Scholar 

  17. Tsurimoto, T., Hase, T., Matsubara, H. and Matsubara, K. 1982. Bacteriophage lambda initiators: Preparation from a strain that overproduces the O and P proteins. Mol. Gen. Genet. 187:79–86.

    Article  CAS  Google Scholar 

  18. Vieira, J. and Messing, J. 1982. The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268.

    Article  CAS  Google Scholar 

  19. Shaw, W.V. 1975. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods in Enzymol. 43:737–755.

    Article  CAS  Google Scholar 

  20. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuchiya, M., Morinaga, Y. Genetic Control Systems of Escherichia Coli Can Confer Inducible Expression of Cloned Genes in Coryneform Bacteria. Nat Biotechnol 6, 428–430 (1988). https://doi.org/10.1038/nbt0488-428

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0488-428

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing