Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diet–microbiota interactions as moderators of human metabolism

Abstract

It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity are coming to light through a powerful combination of translation-focused animal models and studies in humans. A body of knowledge is accumulating that points to the gut microbiota as a mediator of dietary impact on the host metabolic status. Efforts are focusing on the establishment of causal relationships in people and the prospect of therapeutic interventions such as personalized nutrition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions between the diet and the gut microbiota dictate the production of short-chain fatty acids.
Figure 2: Mechanisms of signalling from the gut microbiota to the host.
Figure 3: Strategies for modulating the gut microbiota to improve human health.

References

  1. Mooradian, A. D. Dyslipidemia in type 2 diabetes mellitus. Nature Clin. Pract. Endocrinol. Metab. 5, 150–159 (2009).

    CAS  Google Scholar 

  2. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  4. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnol. 32, 834–841 (2014).

    Article  CAS  Google Scholar 

  7. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rabot, S. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959 (2010).

    CAS  PubMed  Google Scholar 

  10. Ding, S. et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE 5, e12191 (2010).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006). The first study to show that the microbiota from an obese mouse could confer increased weight gain to a germ-free recipient mouse.

    Article  ADS  PubMed  Google Scholar 

  13. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013). This study showed that a microbiota from a lean individual could invade the microbiota of an obese individual and provide protection from weight gain, but that the invasion and protection was dependent on diet.

    Article  CAS  PubMed  Google Scholar 

  15. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22, 228–238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010). The first of several studies to show that the gut microbiota of a traditional rural population is more diverse than and contains distinct taxa in comparison to the microbiotas of Western populations.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Kovatcheva-Datchary, P. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 22, 971–982 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Torrey, J. C. The regulation of the intestinal flora of dogs through diet. J. Med. Res. 39, 415–447 (1919).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Med. 19, 576–585 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Wu, G. D. et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 65, 63–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Wexler, A. G. et al. Human symbionts inject and neutralize antibacterial toxins to persist in the gut. Proc. Natl Acad. Sci. USA 113, 3639–3644 (2016).

    Article  ADS  CAS  Google Scholar 

  31. Chatzidaki-Livanis, M., Geva-Zatorsky, N. & Comstock, L. E. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl Acad. Sci. USA 113, 3627–3632 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, S. M. et al. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501, 426–429 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reyes, A., Wu, M., McNulty, N. P., Rohwer, F. L. & Gordon, J. I. Gnotobiotic mouse model of phage–bacterial host dynamics in the human gut. Proc. Natl Acad. Sci. USA 110, 20236–20241 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wostmann, B. S., Larkin, C., Moriarty, A. & Bruckner-Kardoss, E. Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. Lab. Anim. Sci. 33, 46–50 (1983).

    CAS  PubMed  Google Scholar 

  35. Lozupone, C. A. et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl Acad. Sci. USA 105, 15076–15081 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. El Kaoutari, A., Armougom, F., Gordon, J. I., Raoult, D. & Henrissat, B. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Rev. Microbiol. 11, 497–504 (2013).

    Article  CAS  Google Scholar 

  37. McNeil, N. I. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39, 338–342 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Bingham, S. & Cummings, J. H. in Medical Aspects of Dietary Fiber (eds Spiller, G. A. & Kay, R. M.) 261–2884 (Plenum, 1980).

    Book  Google Scholar 

  40. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter–gatherers. Nature Commun. 5, 3654 (2014).

    Article  ADS  CAS  Google Scholar 

  41. Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Koren, O. et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150, 470–480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Backhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fleissner, C. K. et al. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 104, 919–929 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. McGill, C. R., Fulgoni, V. L. III & Devareddy, L. Ten-year trends in fiber and whole grain intakes and food sources for the United States population: National Health and Nutrition Examination Survey 2001–2010. Nutrients 7, 1119–1130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Obregon-Tito, A. J. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nature Commun. 6, 6505 (2015).

    Article  ADS  CAS  Google Scholar 

  54. Martínez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

    Article  PubMed  CAS  Google Scholar 

  55. Clemente, J. C. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, e1500183 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  56. Forslund, K. et al. Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 23, 1163–1169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Srinivasan, S. et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLoS ONE 7, e37818 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martens, E. C., Kelly, A. G., Tauzin, A. S. & Brumer, H. The devil lies in the details: how variations in polysaccharide fine-structure impact the physiology and evolution of gut microbes. J. Mol. Biol. 426, 3851–3865 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rampelli, S. et al. Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol. 25, 1682–1693 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Donia, M. S. & Fischbach, M. A. Small molecules from the human microbiota. Science 349, 1254766 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Meyer, T. W. & Hostetter, T. H. Uremic solutes from colon microbes. Kidney Int. 81, 949–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012). This study demonstrated that the use of antibiotics in early life might cause metabolic disease in later life.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18, 190–195 (2010).

    Article  PubMed  Google Scholar 

  68. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl. Med. 5, 178ra41 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Donohoe, D. R., Wali, A., Brylawski, B. P. & Bultman, S. J. Microbial regulation of glucose metabolism and cell-cycle progression in mammalian colonocytes. PLoS ONE 7, e46589 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wichmann, A. et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14, 582–590 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nature Commun. 6, 7320 (2015).

    Article  ADS  CAS  Google Scholar 

  75. Davie, J. R. Inhibition of histone deacetylase activity by butyrate. J. Nutr. 133, 2485S–2493S (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sjöström, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  81. Sjöström, L. et al. Bariatric surgery and long-term cardiovascular events. J. Am. Med. Assoc. 307, 56–65 (2012).

    Article  Google Scholar 

  82. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Midtvedt, T. Microbial bile acid transformation. Am. J. Clin. Nutr. 27, 1341–1347 (1974).

    Article  CAS  PubMed  Google Scholar 

  84. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nature Rev. Drug Discov. 7, 678–693 (2008).

    Article  CAS  Google Scholar 

  85. Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR Antagonist. Cell Metab. 17, 225–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Li, F. et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nature Commun. 4, 2384 (2013).

    Article  ADS  CAS  Google Scholar 

  88. Jiang, C. et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125, 386–402 (2015).

    Article  PubMed  Google Scholar 

  89. Parséus, A. et al. Microbiota-induced obesity requires farnesoid X receptor. Gut http://dx.doi.org/10.1136/gutjnl-2015-310283 (2016).

  90. Ryan, K. K. et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509, 183–188 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41, 296–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Meijers, B. K. et al. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1182–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Koppe, L. et al. p-Cresyl sulfate promotes insulin resistance associated with CKD. J. Am. Soc. Nephrol. 24, 88–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Barreto, F. C. et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 4, 1551–1558 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Caesar, R. et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut 61, 1701–1707 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Med. 15, 921–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Med. 15, 940–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Med. 15, 930–939 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Med. 20, 159–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 2374–2383 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007). The first study to demonstrate that the presence of endotoxin is sufficient to alter glucose metabolism in mice.

    Article  CAS  PubMed  Google Scholar 

  109. Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Ghoshal, S., Witta, J., Zhong, J., de Villiers, W. & Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 50, 90–97 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Garidou, L. et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 22, 100–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163, 381–393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015). This study used a machine-learning approach to mine personal health profiles that included microbiome data to predict the postprandial glycaemic response.

    Article  CAS  PubMed  Google Scholar 

  115. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916 (2012). This study demonstrated that sensitivity to insulin could be changed by directly altering the gut microbiota through faecal microbiota transplantation.

    Article  CAS  PubMed  Google Scholar 

  118. Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lichtman, J. S. et al. The effect of microbial colonization on the host proteome varies by gastrointestinal location. ISME J. 10, 1170–1181 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015). The first example of inhibiting microbial enzymes (or 'drugging the bug') to prevent atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ajslev, T. A., Andersen, C. S., Gamborg, M., Sorensen, T. I. & Jess, T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int. J. Obes. 35, 522–529 (2011).

    Article  CAS  Google Scholar 

  123. Kim, Y. & Je, Y. Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am. J. Epidemiol. 180, 565–573 (2014).

    Article  PubMed  Google Scholar 

  124. Yang, Y., Zhao, L. G., Wu, Q. J., Ma, X. & Xiang, Y. B. Association between dietary fiber and lower risk of all-cause mortality: a meta-analysis of cohort studies. Am. J. Epidemiol. 181, 83–91 (2015).

    Article  PubMed  Google Scholar 

  125. Salonen, A. et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8, 2218–2230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W. & Flint, H. J. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 71, 3692–3700 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chung, W. S. et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 14, 3 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bown, R. L., Gibson, J. A., Sladen, G. E., Hicks, B. & Dawson, A. M. Effects of lactulose and other laxatives on ileal and colonic pH as measured by a radiotelemetry device. Gut 15, 999–1004 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kettle, H., Louis, P., Holtrop, G., Duncan, S. H. & Flint, H. J. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ. Microbiol. 17, 1615–1630 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Sonnenburg and Bäckhed laboratories for discussions. This work was funded by a grant from the US National Institute of Diabetes and Digestive and Kidney Diseases NIDDK (R01-DK085025 to J.L.S.) and grants from the Swedish Research Council and the Novo Nordisk Foundation to F.B. F.B. is a recipient of a European Research Council Consolidator Grant (615362-METABASE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Justin L. Sonnenburg or Fredrik Bäckhed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com.reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonnenburg, J., Bäckhed, F. Diet–microbiota interactions as moderators of human metabolism. Nature 535, 56–64 (2016). https://doi.org/10.1038/nature18846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature18846

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing