Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hallmarks of pluripotency

A Corrigendum to this article was published on 16 December 2015

Abstract

Stem cells self-renew and generate specialized progeny through differentiation, but vary in the range of cells and tissues they generate, a property called developmental potency. Pluripotent stem cells produce all cells of an organism, while multipotent or unipotent stem cells regenerate only specific lineages or tissues. Defining stem-cell potency relies upon functional assays and diagnostic transcriptional, epigenetic and metabolic states. Here we describe functional and molecular hallmarks of pluripotent stem cells, propose a checklist for their evaluation, and illustrate how forensic genomics can validate their provenance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stem-cell potency.
Figure 2: Genomic provenance of nuclear transfer human embryonic stem cells (NT‐hESCs).

Similar content being viewed by others

References

  1. Kelly, S. J. Studies of the developmental potential of 4- and 8-cell stage blastomeres. J. Exp. Zool. 200, 365–376 (1977)

    Article  CAS  PubMed  Google Scholar 

  2. Gurdon, J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622–640 (1962)A pioneering study that demonstrated that somatic cells can be reset to an early embryonic state via nuclear transplantation into eggs.

    CAS  PubMed  Google Scholar 

  3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)The landmark paper establishing that four transcription factors can reprogram somatic cells to a pluripotent state.

    Article  CAS  PubMed  Google Scholar 

  4. Stevens, L. C. Studies on transplantable testicular teratomas of strain 129 mice. J. Natl. Cancer Inst. 20, 1257–1275 (1958)

    Article  CAS  PubMed  Google Scholar 

  5. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981)A paper establishing that pluripotent stem cells can be isolated from mouse blastocysts and be propagated in vitro as continuously growing cell lines.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981)A paper establishing that pluripotent stem cells can be isolated from mouse blastocysts and be propagated in vitro as continuously growing cell lines.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomson, J. A. et al. Embryonic stem cells derived from human blastocysts. Science 282, 1145–1147 (1998)The landmark paper establishing that pluripotent stem cells can be isolated from human blastocysts.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Thomson, J. A. et al. Isolation of a primate embryonic stem cell line. Proc. Natl Acad. Sci. USA 92, 7844–7848 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007)One of two pioneering studies that established that an alternative pluripotent state can be isolated from post-implantation mouse embryos resembling conventional human ES cells, suggesting that human ES cells might correspond to a post-implantation state.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007)One of two pioneering studies that established an alternative pluripotent state from post-implantation mouse embryos that resembles conventional human ES cells, suggesting that human ES cells might correspond to a post-implantation state.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Matsui, Y., Zsebo, K. & Hogan, B. L. M. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70, 841–847 (1992)

    Article  CAS  PubMed  Google Scholar 

  12. Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Ko, K. et al. Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5, 87–96 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. Boroviak, T. et al. The ability of inner-cell-mass cells to self-renew as embryonic stem cells following epiblast specification. Nature Cell Bio. 16, 516–528 (2014)

    CAS  Google Scholar 

  15. Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Tachibana, M. et al. Generation of chimeric rhesus monkeys. Cell 148, 285–295 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boyer, L. A. et al. Core regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005)A study that affirmed the principle that OCT4, SOX2, and NANOG constitute a core regulatory circuitry that explains the self-renewal and differentiation capacity of PS cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Masui, S. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biol. 9, 625–635 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Z., Oron, E., Nelson, B., Razis, S. & Ivanova, N. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10, 440–454 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722–737 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, X. et al. Integration of external signaling pathway with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Leitch, H. G. et al. Naive pluripotency is associated with global DNA hypomethylation. Nature Struct. Mol. Biol. 20, 311–316 (2013)The first study to describe the association between 2i cultivation and DNA hypomethylation, linking in vitro naive pluripotency with the DNA hypomethylation observed in pre-implantation embryos and the germ line.

    Article  CAS  Google Scholar 

  31. Guo, G. et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063–1069 (2009)The first paper to convert EpiSCs to naive pluripotency, affirming the concept that the naive and primed states of pluripotency are interconvertible.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bao, S. et al. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461, 1292–1295 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Dunn, S. J., Martello, G., Yordanov, B., Emmott, S. & Smith, A. G. Defining an essential transcription factor program for naive pluripotency. Science 344, 1156–1160 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008)The first study to report the remarkable synergism between MEK and GSK3 inhibition and the first articulation of the concept of a pluripotent ‘ground state’.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marks, H. et al. The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149, 590–604 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith, Z. D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, J. et al. An alternative pluripotent state confers interspecies chimeric competency. Nature 521, 316–321 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar, R. M. et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516, 56–61 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morgani, S. M. et al. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep. 3, 1945–1957 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chamberlain, S. J., Yee, D. & Magnuson, T. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496–1505 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Okano, M., Bell, D. W., Habeer, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999)

    Article  CAS  PubMed  Google Scholar 

  42. Li, E., Bestor, T. H. & Jaenisch, R. Target mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992)

    Article  CAS  PubMed  Google Scholar 

  43. Tsumura, A. et al. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b. Genes Cells 11, 805–814 (2006)

    Article  CAS  PubMed  Google Scholar 

  44. Beard, C., Li, E. & Jaenisch, R. Loss of methylation activates XIST in somatic but not in embryonic cells. Genes Dev. 9, 2325–2334 (1995)

    Article  CAS  PubMed  Google Scholar 

  45. Liao, J. et al. Targeted disruption of DNMT1, DNMT3A, and DNMT3B in human embryonic stem cells. Nature Genet. 47, 469–478 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. Chan, E. M. et al. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnol. 27, 1033–1037 (2009)

    Article  CAS  Google Scholar 

  47. Nagy, A., Gocza, E. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990)

    Article  CAS  PubMed  Google Scholar 

  48. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, Z. & Jaenisch, R. At most three ES cells contribute to the somatic lineages of chimeric mice produced by ES-tetraploid complementation. Dev. Biol. 275, 192–201 (2004)

    Article  CAS  PubMed  Google Scholar 

  50. Huang, Y., Osorno, R., Tsakiridis, A. & Wilson, V. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep. 2, 1571–1578 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. Hanna, J. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl Acad. Sci. USA 107, 9222–9227 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluriptoency. Cell Stem Cell 15, 471–487 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. James, D., Noggle, S. A., Swigut, T. & Brivanlou, A. H. Contribution of human embryonic stem cells to mouse blastocyst. Dev. Biol. 295, 90–102 (2006)

    Article  CAS  PubMed  Google Scholar 

  56. Fang, R. et al. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. Cell Stem Cell 15, 488–496 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. Chen, Y. et al. Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell 17, 116–124 (2015)

    Article  CAS  PubMed  Google Scholar 

  58. Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan, L. et al. Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nature Struct. Mol. Biol. 20, 1131–1139 (2013)

    Article  CAS  Google Scholar 

  61. Okamoto, I. et al. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472, 370–374 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  62. O’Leary, T. et al. Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nature Biotechnol. 30, 278–282 (2012)

    Article  CAS  Google Scholar 

  63. Silva, S. S., Rowntree, R. K., Mekhoubad, S. & Lee, J. T. X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc. Natl Acad. Sci. USA 105, 4820–4825 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Anguera, M. C. et al. Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell 11, 75–90 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chan, Y. S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675 (2013)

    Article  CAS  PubMed  Google Scholar 

  66. Ware, C. B. et al. Derivation of naive human embryonic stem cells. Proc. Natl Acad. Sci. USA 111, 4484–4489 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Valamehr, B. et al. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Rep. 2, 366–381 (2014)

    Article  CAS  Google Scholar 

  68. Leitch, H. G. et al. Rebuilding pluripotency from primordial germ cells. Stem Cell Rep. 1, 66–78 (2013)

    Article  CAS  Google Scholar 

  69. Hou, P. et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341, 651–654 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Conrad, S. et al. Generation of pluripotent stem cells from adult human testis. Nature 456, 344–349 (2008); retraction 512, 338 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Ko, K. et al. Human adult germline stem cells in question. Nature 465, E1 (2010)

    Article  CAS  PubMed  Google Scholar 

  73. Reyes, M. & Verfaillie, C. M. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann. NY Acad. Sci. 938, 231–235 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Kucia, M. et al. A population of very small embryonic-like (VSEL) CXCR4+SSEA-1+Oct4+ stem cells identified in adult bone marrow. Leukemia 20, 857–869 (2006)

    Article  CAS  PubMed  Google Scholar 

  76. Kuroda, Y. et al. Isolation, culture, and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nature Protocols 8, 1391–1415 (2013)

    Article  PubMed  CAS  Google Scholar 

  77. Roy, S. et al. Rare somatic cells from human breast tissue exhibit extensive lineage plasticity. Proc. Natl Acad. Sci. USA 110, 4598–4603 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nicholas, J. & Hall, B. Experiments on developing rats: II. The development of isolated blastomeres and fused eggs. J. Exp. Zool. 90, 441–459 (1942)

    Article  Google Scholar 

  79. Tarkowski, A. K. Experiments on the development of isolated blastomeres of mouse eggs. Nature 184, 1286–1287 (1959)

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Willadsen, S. M. & Polge, C. Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Vet. Rec. 108, 211–213 (1981)

    Article  CAS  PubMed  Google Scholar 

  81. Mitalipov, S. M. et al. Monozygotic twinning in rhesus monkeys by manipulation of in vitro-derived embryos. Biol. Reprod. 66, 1449–1455 (2002)

    Article  CAS  PubMed  Google Scholar 

  82. Rossant, J. Postimplantation development of blastomeres isolated from 4- and 8-cell mouse eggs. J. Embryol. Exp. Morphol. 36, 283–290 (1976)

    CAS  PubMed  Google Scholar 

  83. Van de Velde, H., Cauffman, G., Tournaye, H., Devroey, P. & Liebaers, I. The four blastomeres of a 4-cell stage human embryo are able to develop individually into blastocysts with inner cell mass and trophectoderm. Hum. Reprod. 23, 1742–1747 (2008)

    Article  PubMed  Google Scholar 

  84. Ng, R. K. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nature Cell Biol. 10, 1280–1290 (2008)

    Article  CAS  PubMed  Google Scholar 

  85. Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Abad, M. et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340–345 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Xu, R. H. et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnol. 20, 1261–1264 (2002)

    Article  CAS  Google Scholar 

  88. Bernardo, A. S. et al. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9, 144–155 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yu, M. et al. A resource for cell line authentication, annotation, and quality control. Nature 520, 307–311 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  92. De Los Angeles, A. et al. Failure to replicate the STAP cell phenomenon. Nature http://dx.doi.org/10.1038/nature15513 (this issue)

  93. RIKEN . Report on STAP Cell Research Paper Investigation. http://www3.riken.jp/stap/e/c13document52.pdf (2014)

  94. Konno, D. et al. STAP cells are derived from ES cells. Nature http://dx.doi.org/10.1038/nature15366 (this issue)

  95. Tachibana, M. et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153, 1228–1238 (2013)This study was the first to demonstrate the feasibility of somatic cell nuclear transfer to reset human cells to totipotency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma, H. et al. Human oocytes reprogram adult somatic nuclei of a type I diabetic to diploid pluripotent stem cells. Nature 511, 177–183 (2014)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim, K. et al. Histocompatible embryonic stem cells by parthenogenesis. Science 315, 482–486 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Kim, K. et al. Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1, 346–352 (2007)

    Article  CAS  PubMed  Google Scholar 

  99. Ohtsuka, S., Nishikawa-Torikai, S. & Niwa, H. E-cadherin promotes incorporation of mouse epiblast stem cells into normal development. PLoS ONE 7, e45220 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cacchiarelli, D. et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 162, 412–424 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Narasimha, M., Barton, S. C. & Surani, M. A. The role of the paternal genome in the development of the mouse germ line. Curr. Biol. 7, 881–884 (1997)

    Article  CAS  PubMed  Google Scholar 

  102. Wakayama, S. et al. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells 25, 986–993 (2007)

    Article  CAS  PubMed  Google Scholar 

  103. Resnick, J. L., Bixler, L. S., Cheng, L. & Donovan, P. J. Long-term proliferation of mouse germ cells in culture. Nature 359, 550–551 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Seandel, M. et al. Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449, 346–350 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Munsie, M. J. et al. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10, 989–992 (2000)

    Article  CAS  PubMed  Google Scholar 

  106. Andrews, P. W., Bronson, D. L., Benham, F., Strickland, S. & Knwles, B. B. A comparative study of eight cell lines derived from human testicular teratocarcinoma. Int. J. Cancer 26, 269–280 (1980)

    Article  CAS  PubMed  Google Scholar 

  107. Revazova, E. S. et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 9, 432–439 (2007)

    Article  CAS  PubMed  Google Scholar 

  108. Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J. & Lanza, R. Human embryonic stem cell lines derived from single blastomeres. Nature 444, 481–485 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  110. ISSCR . Guidelines for the conduct of human embryonic stem cell research. http://www.isscr.org/docs/default-source/hesc-guidelines/isscrhescguidelines2006.pdf (2006)

  111. Müller, F.-J. et al. A bioinformatics assay for pluripotency in human cells. Nature Methods 8, 315–317 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Cahan, P. et al. CellNet: network biology applied to stem cell engeineering. Cell 158, 903–915 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. International Cell Line Authentication Committee . Guide to human cell line authentication (2012. http://standards.atcc.org/kwspub/home/the_international_cell_line_authentication_committee-iclac_/Authentication_SOP.pdf

Download references

Acknowledgements

We would like to thank B. Johannesson and D. Egli for providing sequencing data from nuclear-transfer-derived human embryonic stem cells. We would also like to thank P. J. Tesar, S. Byrne, A. Urbach, Y.-H. Loh, R. Zhao, K. Tsankov, J. Powers, T. Schlaeger, L. Daheron, N. Shyh-Chang, Y. S. Chan, and other members of the Daley laboratory for critical reading of this manuscript. G.Q.D. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

A.D.L.A. and G.Q.D. conceived the study and wrote the manuscript. F.F., R.X., S.L. and P.J.P. performed bioinformatic analyses and wrote the forensic genomics section. Y.F., N.B., H.D., K.H., R.J., H.G.L., M.W.L, E.L., D.P., J.R. and M.W. assisted with writing.

Corresponding author

Correspondence to George Q. Daley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1, Supplementary Notes and additional references. (PDF 580 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Los Angeles, A., Ferrari, F., Xi, R. et al. Hallmarks of pluripotency. Nature 525, 469–478 (2015). https://doi.org/10.1038/nature15515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature15515

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing