Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Function and information content of DNA methylation

Subjects

Abstract

Cytosine methylation is a DNA modification generally associated with transcriptional silencing. Factors that regulate methylation have been linked to human disease, yet how they contribute to malignances remains largely unknown. Genomic maps of DNA methylation have revealed unexpected dynamics at gene regulatory regions, including active demethylation by TET proteins at binding sites for transcription factors. These observations indicate that the underlying DNA sequence largely accounts for local patterns of methylation. As a result, this mark is highly informative when studying gene regulation in normal and diseased cells, and it can potentially function as a biomarker. Although these findings challenge the view that methylation is generally instructive for gene silencing, several open questions remain, including how methylation is targeted and recognized and in what context it affects genome readout.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic distribution of methylated cytosine in a typical invertebrate and vertebrate genome.
Figure 2: Potential scenarios for the interplay between cytosine methylation (shown by level of 5-methylcytosine) and transcription-factor binding.
Figure 3: Setting, erasing and recognizing cytosine methylation.
Figure 4: Potential DNA sequence determinants of cytosine methylation at CG-poor regions.

Similar content being viewed by others

References

  1. Arber, W. & Dussoix, D. Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage lambda. J. Mol. Biol. 5, 18–36 (1962).

    Article  CAS  PubMed  Google Scholar 

  2. Wion, D. & Casadesus, J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nature Rev. Microbiol. 4, 183–192 (2006).

    Article  CAS  Google Scholar 

  3. Vardimon, L., Kressmann, A., Cedar, H., Maechler, M. & Doerfler, W. Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc. Natl Acad. Sci. USA 79, 1073–1077 (1982).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stein, R., Razin, A. & Cedar, H. In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc. Natl Acad. Sci. USA 79, 3418–3422 (1982).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature Rev. Genet. 9, 465–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl Acad. Sci. USA 107, 8689–8694 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Rev. Genet. 13, 484–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Song, J., Rechkoblit, O., Bestor, T. H. & Patel, D. J. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331, 1036–1040 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Riggs, A. D. X inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14, 9–25 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. Holliday, R. & Pugh, J. E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nature Rev. Genet. 14, 204–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, H. J., Hore, T. A. & Reik, W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14, 710–719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Hon, G. C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nature Genet. 45, 1198–1206 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hodges, E. et al. Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. Mol. Cell 44, 17–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Selker, E. U. Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet. 13, 296–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retro viruses is constrained by cytosine methylation. Nature Genet. 20, 116–117 (1998). This study showed that absence of DNA methylation in the developing mouse embryo leads to reactivation of retroviruses.

    Article  CAS  PubMed  Google Scholar 

  23. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methyl-ation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Hill, P. W., Amouroux, R. & Hajkova, P. DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics 104, 324–333 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, S. et al. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells. Genes Dev. 28, 2041–2055 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki, M. M., Kerr, A. R., De Sousa, D. & Bird, A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 17, 625–631 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simmen, M. W. et al. Nonmethylated transposable elements and methylated genes in a chordate genome. Science 283, 1164–1167 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Keogh, M. C. et al. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123, 593–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Carrozza, M. J. et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123, 581–592 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Maunakea, A. K. et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466, 253–257 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 577–590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitchell, R. S. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, e234 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Maunakea, A. K., Chepelev, I., Cui, K. & Zhao, K. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 23, 1256–1269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chodavarapu, R. K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cortázar, D. et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470, 419–423 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  37. Long, H. K. et al. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. eLife 2, e00348 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Smallwood, S. A. et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nature Genet. 43, 811–814 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33 (Suppl.), 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993). This work established that imprinted gene expression requires DNA methylation.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Velasco, G. et al. Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc. Natl Acad. Sci. USA 107, 9281–9286 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Borgel, J. et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nature Genet. 42, 1093–1100 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Tanay, A., O'Donnell, A. H., Damelin, M. & Bestor, T. H. Hyperconserved CpG domains underlie Polycomb-binding sites. Proc. Natl Acad. Sci. USA 104, 5521–5526 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lynch, M. D. et al. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. EMBO J. 31, 317–329 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39, 237–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Mohn, F. et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell 30, 755–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet. 39, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Ooi, S. K. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Han, L., Lin, I. G. & Hsieh, C. L. Protein binding protects sites on stable episomes and in the chromosome from de novo methylation. Mol. Cell. Biol. 21, 3416–3424 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kress, C., Thomassin, H. & Grange, T. Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proc. Natl Acad. Sci. USA 103, 11112–11117 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, Y., Zhang, X., Blumenthal, R.M. & Cheng, X. A common mode of recognition for methylated CpG. Trends Biochem. Sci. 38, 177–183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Yoder, J. A. & Bestor, T. H. A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum. Mol. Genet. 7, 279–284 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23, 5594–5605 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009). This work established TET enzymes as active DNA demethylases and 5hmC as their product.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gu, T. P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Ficz, G. et al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Yamaguchi, S. et al. Tet1 controls meiosis by regulating meiotic gene expression. Nature 492, 443–447 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dawlaty, M. M. et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24, 310–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Penn, N. W., Suwalski, R., O'Riley, C., Bojanowski, K. & Yura, R. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem. J. 126, 781–790 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, L. et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nature Chem. Biol. 8, 328–330 (2012).

    Article  CAS  Google Scholar 

  69. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pastor, W. A. et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxy methylcytosine at single-base resolution. Science 336, 934–937 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Song, C. X. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nature Rev. Mol. Cell Biol. 14, 341–356 (2013).

    Article  CAS  Google Scholar 

  75. Stroud, H., Feng, S., Morey Kinney, S., Pradhan, S. & Jacobsen, S. E. 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12, R54 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Feldmann, A. et al. Transcription factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS Genet. 9, e1003994 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lu, F., Liu, Y., Jiang, L., Yamaguchi, S. & Zhang, Y. Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev. 28, 2103–2119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hon, G. C. et al. 5mC Oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell 56, 286–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ginno, P. A., Lott, P. L., Christensen, H. C., Korf, I. & Chedin, F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol. Cell 45, 814–825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Blaschke, K. et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222–226 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baubec, T., Ivanek, R., Lienert, F. & Schubeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Meehan, R. R., Lewis, J. D., McKay, S., Kleiner, E. L. & Bird, A. P. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58, 499–507 (1989). This study reported the identification of the first protein that specifically binds the methylated CG dinucleotide.

    Article  CAS  PubMed  Google Scholar 

  84. Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Thomson, J. P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hahn, M. A., Szabo, P. E. & Pfeifer, G. P. 5-Hydroxymethylcytosine: a stable or transient DNA modification? Genomics 104, 304–323 (2014).

    Article  CAS  Google Scholar 

  88. Long, H. K., Blackledge, N. P. & Klose, R. J. ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem. Soc. Trans. 41, 727–740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Tomizawa, S. et al. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138, 811–820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kasowski, M. et al. Extensive variation in chromatin states across humans. Science 342, 750–752 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kilpinen, H. et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342, 744–747 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. McVicker, G. et al. Identification of genetic variants that affect histone modifications in human cells. Science 342, 747–749 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gutierrez-Arcelus, M. et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. eLife 2, e00523 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Lienert, F. et al. Identification of genetic elements that autonomously determine DNA methylation states. Nature Genet. 43, 1091–1097 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Krebs, A., Dessus-Babus, S., Burger, L. & Schubeler, D. High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. eLife 3, e04094 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Macleod, D., Charlton, J., Mullins, J. & Bird, A. P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Bell, J. T. & Spector, T. D. DNA methylation studies using twins: what are they telling us? Genome Biol. 13, 172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Radford, E. J. et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Heard, E. & Martienssen, R. A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ono, R. et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 62, 4075–4080 (2002).

    CAS  PubMed  Google Scholar 

  104. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Corces-Zimmerman, M. R., Hong, W. J., Weissman, I. L., Medeiros, B. C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl Acad. Sci. USA 111, 2548–2553 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nature Rev. Genet. 14, 765–780 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genet. 38, 896–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Burger, L., Gaidatzis, D., Schubeler, D. & Stadler, M. B. Identification of active regulatory regions from DNA methylation data. Nucleic Acids Res. 41, e155 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Heyn, H. & Esteller, M. DNA methylation profiling in the clinic: applications and challenges. Nature Rev. Genet. 13, 679–692 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Schillebeeckx, M. et al. Laser capture microdissection-reduced representation bisulfite sequencing (LCM-RRBS) maps changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse. Nucleic Acids Res. 41, e116 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hovestadt, V. et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature 510, 537–541 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nature Rev. Genet. 12, 529–541 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Weller, M. et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nature Rev. Neurol. 6, 39–51 (2010).

    Article  CAS  Google Scholar 

  115. Jacquemont, S. et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci. Transl. Med. 3, 64ra61 (2011).

    Article  CAS  Google Scholar 

  116. Bock, C. Analysing and interpreting DNA methylation data. Nature Rev. Genet. 13, 705–719 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Junker, J. P. & van Oudenaarden, A. Every cell is special: genome-wide studies add a new dimension to single-cell biology. Cell 157, 8–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Ma, H. et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177–183 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Singer, Z. S. et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55, 319–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nature Methods 11, 817–820 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shipony, Z. et al. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature 513, 115–119 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Landan, G. et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nature Genet. 44, 1207–1214 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to colleagues, whose work I could not cite or only discuss in a limited context owing to space limitations. I thank in particular P. Ginno and further T. Baubec., M. Lorincz and N. Thomae for critical input on the manuscript. Work in my laboratory is supported by the Novartis research foundation, the European Union (NoE EpiGeneSys FP7- HEALTH-2010-257082 and the Blueprint consortium FP7-282510), the European Research Council (EpiGePlas), the SNF Sinergia programme and the Swiss Initiative in Systems Biology (RTD Cell Plasticity).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schübeler.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015). https://doi.org/10.1038/nature14192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14192

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing