Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals

Abstract

Advanced (long-chain) fuels and chemicals are generated from short-chain metabolic intermediates through pathways that require carbon-chain elongation. The condensation reactions mediating this carbon–carbon bond formation can be catalysed by enzymes from the thiolase superfamily, including β-ketoacyl-acyl-carrier protein (ACP) synthases, polyketide synthases, 3-hydroxy-3-methylglutaryl-CoA synthases, and biosynthetic thiolases1. Pathways involving these enzymes have been exploited for fuel and chemical production, with fatty-acid biosynthesis (β-ketoacyl-ACP synthases) attracting the most attention in recent years2,3,4. Degradative thiolases, which are part of the thiolase superfamily and naturally function in the β-oxidation of fatty acids5,6, can also operate in the synthetic direction and thus enable carbon-chain elongation. Here we demonstrate that a functional reversal of the β-oxidation cycle can be used as a metabolic platform for the synthesis of alcohols and carboxylic acids with various chain lengths and functionalities. This pathway operates with coenzyme A (CoA) thioester intermediates and directly uses acetyl-CoA for acyl-chain elongation (rather than first requiring ATP-dependent activation to malonyl-CoA), characteristics that enable product synthesis at maximum carbon and energy efficiency. The reversal of the β-oxidation cycle was engineered in Escherichia coli and used in combination with endogenous dehydrogenases and thioesterases to synthesize n-alcohols, fatty acids and 3-hydroxy-, 3-keto- and trans-Δ2-carboxylic acids. The superior nature of the engineered pathway was demonstrated by producing higher-chain linear n-alcohols (C ≥ 4) and extracellular long-chain fatty acids (C > 10) at higher efficiency than previously reported2,4,7,8,9. The ubiquitous nature of β-oxidation, aldehyde/alcohol dehydrogenase and thioesterase enzymes has the potential to enable the efficient synthesis of these products in other industrial organisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional reversal of the β-oxidation cycle.
Figure 2: Engineered one-turn reversal of the β-oxidation cycle for the synthesis of n -butanol and short-chain carboxylic acids.
Figure 3: Synthesis of higher-chain (C > 4) carboxylic acids and n -alcohols through the engineered reversal of the β-oxidation cycle.

References

  1. Haapalainen, A. M., Merilainen, G. & Wierenga, R. K. The thiolase superfamily: condensing enzymes with diverse reaction specificities. Trends Biochem. Sci. 31, 64–71 (2006)

    Article  CAS  Google Scholar 

  2. Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–562 (2010)

    Article  ADS  CAS  Google Scholar 

  3. Handke, P., Lynch, S. A. & Gill, R. T. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab. Eng. 13, 28–37 (2010)

    Article  Google Scholar 

  4. Lennen, R. M., Braden, D. J., West, R. M., Dumesic, J. A. & Pfleger, B. F. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol. Bioeng. 106, 193–202 (2010)

    Article  CAS  Google Scholar 

  5. Clark, D. P. & Cronan, J. E. in Escherichia coli and Salmonella: Cellular and Molecular Biology (ed. Neidhart, F. C. ) Ch. 3.4.4 343–357 (American Society for Microbiology, 2005)

    Google Scholar 

  6. Poirier, Y., Antonenkov, V. D., Glumoff, T. & Hiltunen, J. K. Peroxisomal β-oxidation—A metabolic pathway with multiple functions. Biochim. Biophys. Acta 1763, 1413–1426 (2006)

    Article  CAS  Google Scholar 

  7. Shen, C. R. & Liao, J. C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 10, 312–320 (2008)

    Article  CAS  Google Scholar 

  8. Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Bond-Watts, B. B., Bellerose, R. J. & Chang, M. C. Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chem. Biol. 7, 222–227 (2011)

    Article  CAS  Google Scholar 

  10. Dellomonaco, C., Rivera, C., Campbell, P. & Gonzalez, R. Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks. Appl. Environ. Microbiol. 76, 5067–5078 (2010)

    Article  CAS  Google Scholar 

  11. Deutscher, J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 11, 87–93 (2008)

    Article  CAS  Google Scholar 

  12. Eppler, T. & Boos, W. Glycerol-3-phosphate-mediated repression of malT in Escherichia coli does not require metabolism, depends on enzyme IIA(Glc) and is mediated by cAMP levels. Mol. Microbiol. 33, 1221–1231 (1999)

    Article  CAS  Google Scholar 

  13. Cho, B. K., Knight, E. M. & Palsson, B. O. Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. Microbiology-Sgm 152, 2207–2219 (2006)

    Article  CAS  Google Scholar 

  14. Jarboe, L. YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl. Microbiol. Biotechnol. 89, 249–257 (2010)

    Article  Google Scholar 

  15. Feigenbaum, J. & Schulz, H. Thiolases of Escherichia coli: Purification and chain length specificities. J. Bacteriol. 122, 407–411 (1975)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jenkins, L. S. & Nunn, W. D. Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system. J. Bacteriol. 169, 42–52 (1987)

    Article  CAS  Google Scholar 

  17. Lee, S. Y. et al. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101, 209–228 (2008)

    Article  CAS  Google Scholar 

  18. Gonzalez, R., Tao, H., Shanmugam, K. T., York, S. W. & Ingram, L. O. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol. Prog. 18, 6–20 (2002)

    Article  CAS  Google Scholar 

  19. Papagianni, M., Avramidis, N. & Filiousis, G. Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture. Microb. Cell Fact. 6 10.1186/1475-2859-6-16 (2007)

  20. Campbell, J. W., Morgan-Kiss, R. M. & Cronan, J. E. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic β-oxidation pathway. Mol. Microbiol. 47, 793–805 (2003)

    Article  CAS  Google Scholar 

  21. Eichler, K., Bourgis, F., Buchet, A., Kleber, H. P. & Mandrandberthelot, M. A. Molecular characterization of the cai operon necessary for carnitine metabolism in Escherichia coli . Mol. Microbiol. 13, 775–786 (1994)

    Article  CAS  Google Scholar 

  22. Walt, A. & Kahn, M. L. The fixA and fixB genes are necessary for anaerobic carnitine reduction in Escherichia coli . J. Bacteriol. 184, 4044–4047 (2002)

    Article  CAS  Google Scholar 

  23. Eichler, K., Buchet, A., Bourgis, F., Kleber, H. P. & Mandrandberthelot, M. A. The fix Escherichia coli region contains four genes related to carnitine metabolism. J. Basic Microbiol. 35, 217–227 (1995)

    Article  CAS  Google Scholar 

  24. Cho, H. S. & Cronan, J. E. Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. J. Biol. Chem. 268, 9238–9245 (1993)

    CAS  PubMed  Google Scholar 

  25. Nie, L., Ren, Y., Janakiraman, A., Smith, S. & Schulz, H. A novel paradigm of fatty acid β-oxidation exemplified by the thioesterase-dependent partial degradation of conjugated linoleic acid that fully supports growth of Escherichia coli . Biochemistry 47, 9618–9626 (2008)

    Article  CAS  Google Scholar 

  26. Yang, S. Y., Yang, X. Y. H., Healylouie, G., Schulz, H. & Elzinga, M. Primary structure of 3-ketoacyl-coenzyme A thiolase from Escherichia coli and the structural organization of the fadAB operon. J. Biol. Chem. 265, 10424–10429 (1990)

    CAS  PubMed  Google Scholar 

  27. Feng, Y. & Cronan, J. E. A new member of the Escherichia coli fad regulon: Transcriptional regulation of fadM (ybaW). J. Bacteriol. 191, 6320–6328 (2009)

    Article  CAS  Google Scholar 

  28. Zhuang, Z. H. et al. Divergence of function in the hot dog fold enzyme superfamily: The bacterial thioesterase YciA. Biochemistry 47, 2789–2796 (2008)

    Article  CAS  Google Scholar 

  29. Zhang, K. C., Sawaya, M. R., Eisenberg, D. S. & Liao, J. C. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl Acad. Sci. USA 105, 20653–20658 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Osman, Y. A., Conway, T., Bonetti, S. J. & Ingram, L. O. Glycolytic flux in Zymomonas mobilis: enzyme and metabolite levels during batch fermentation. J. Bacteriol. 169, 3726–3736 (1987)

    Article  CAS  Google Scholar 

  31. Yazdani, S. S. & Gonzalez, R. Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab . Eng. 10, 340–351 (2008)

    CAS  Google Scholar 

  32. Cirino, P. C., Chin, J. W. & Ingram, L. O. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol . Bioeng. 95, 1167–1176 (2006)

    Article  CAS  Google Scholar 

  33. Neidhart, F. C., Bloch, P. L. & Smith, D. F. Culture media for enterobacteria. J . Bacteriol. 119, 736–747 (1974)

    Google Scholar 

  34. Sambrook, J. & Russell, D. W. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory, 2001)

    Google Scholar 

  35. Atsumi, S. et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10, 305–311 (2008)

    Article  CAS  Google Scholar 

  36. Dharmadi, Y. & Gonzalez, R. A better global resolution function and a novel iterative stochastic search method for optimization of high-performance liquid chromatographic separation. J. Chromatogr. A 1070, 89–101 (2005)

    Article  CAS  Google Scholar 

  37. Lalman, J. A. & Bagley, D. M. Extracting long-chain fatty acids from a fermentation medium. J. Am. Oil Chem. Soc. 81, 105–110 (2004)

    Article  CAS  Google Scholar 

  38. Wiesenborn, D. P., Rudolph, F. B. & Papoutsakis, E. T. Thiolase from Clostridium acetobutylicum ATCC824 and its role in the synthesis of acids and solvents. Appl . Environ. Microbiol. 54, 2717–2722 (1988)

    CAS  Google Scholar 

  39. Hartmanis, M. G. N. & Gatenbeck, S. Intermediary metabolism in Clostridium acetobutylicum—levels of enzymes involved in the formation of acetate and butyrate. Appl. Environ. Microbiol. 47, 1277–1283 (1984)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Durre, P., Kuhn, A., Gottwald, M. & Gottschalk, G. Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum . Appl. Microbiol. Biotechnol. 26, 268–272 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

We thank B. Erni and H. Mori for providing research materials, S. Moran and J. F. Fallas Valverde for assistance with NMR techniques, and D. A. Castillo-Rivera, B. Wilson, S. P. T. Matsuda, M. Li and K.-Y. San for assistance with GC-MS techniques. R.G. thanks N. E. Gonzalez, B. C. Gutierrez and M. D. Diaz for their continued support.

Author information

Authors and Affiliations

Authors

Contributions

R.G. conceived the work. C.D. and R.G. designed the experiments. C.D. conducted all strain characterization experiments. C.D. performed the in silico analyses. C.D., J.M.C. and E.N.M. constructed the strains. J.M.C. performed enzyme assays and the thermodynamic analysis. R.G. and C.D. drafted the manuscript. All authors read, edited and approved the final manuscript.

Corresponding author

Correspondence to Ramon Gonzalez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1with legend, Supplementary Tables 1-7 and additional references. (PDF 1085 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dellomonaco, C., Clomburg, J., Miller, E. et al. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359 (2011). https://doi.org/10.1038/nature10333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10333

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research