Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake

Abstract

Mitochondrial calcium uptake has a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here we use an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics and organelle proteomics. RNA interference against 13 top candidates highlighted one gene, CBARA1, that we call hereafter mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the mitochondrial inner membrane and has two canonical EF hands that are essential for its activity, indicating a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high-capacity mitochondrial calcium uptake. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted RNAi screen for mitochondrial Ca 2+ uptake.
Figure 2: Mitochondrial membrane potential, respiration and mtDNA copy number in MICU1 -silenced cells.
Figure 3: Measurement of mitochondrial Ca 2+ uptake kinetics in populations of cells, individual cells and permeabilized cells.
Figure 4: MICU1 is an EF-hand protein localized to mitochondria.
Figure 5: Contribution of MICU1 to cytosolic Ca 2+ dynamics and metabolic coupling.

Similar content being viewed by others

References

  1. DeLuca, H. F. & Engstrom, G. W. Calcium uptake by rat kidney mitochondria. Proc. Natl Acad. Sci. USA 47, 1744–1750 (1961)

    Article  ADS  CAS  Google Scholar 

  2. Vasington, F. D. & Murphy, J. V. Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J. Biol. Chem. 237, 2670–2677 (1962)

    CAS  PubMed  Google Scholar 

  3. Rizzuto, R., Simpson, A. W., Brini, M. & Pozzan, T. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325–327 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Filippin, L., Magalhaes, P. J., Di Benedetto, G., Colella, M. & Pozzan, T. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J. Biol. Chem. 278, 39224–39234 (2003)

    Article  CAS  Google Scholar 

  5. Palmer, A. E. et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13, 521–530 (2006)

    Article  CAS  Google Scholar 

  6. Jouaville, L. S., Ichas, F., Holmuhamedov, E. L., Camacho, P. & Lechleiter, J. D. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Kaftan, E. J., Xu, T., Abercrombie, R. F. & Hille, B. Mitochondria shape hormonally induced cytoplasmic calcium oscillations and modulate exocytosis. J. Biol. Chem. 275, 25465–25470 (2000)

    Article  CAS  Google Scholar 

  8. Spat, A., Szanda, G., Csordas, G. & Hajnoczky, G. High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium 44, 51–63 (2008)

    Article  CAS  Google Scholar 

  9. Denton, R. M. & McCormack, J. G. The role of calcium in the regulation of mitochondrial metabolism. Biochem. Soc. Trans. 8, 266–268 (1980)

    Article  CAS  Google Scholar 

  10. Hajnoczky, G., Robb-Gaspers, L. D., Seitz, M. B. & Thomas, A. P. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424 (1995)

    Article  CAS  Google Scholar 

  11. Balaban, R. S. The role of Ca2+ signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim. Biophys. Acta 1787, 1334–1341 (2009)

    Article  CAS  Google Scholar 

  12. Bernardi, P. & Rasola, A. Calcium and cell death: the mitochondrial connection. Subcell. Biochem. 45, 481–506 (2007)

    Article  CAS  Google Scholar 

  13. Gunter, K. K. & Gunter, T. E. Transport of calcium by mitochondria. J. Bioenerg. Biomembr. 26, 471–485 (1994)

    Article  CAS  Google Scholar 

  14. Kirichok, Y., Krapivinsky, G. & Clapham, D. E. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427, 360–364 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Santo-Domingo, J. & Demaurex, N. Calcium uptake mechanisms of mitochondria. Biochim. Biophys. Acta 1797, 907–912 (2010)

    Article  CAS  Google Scholar 

  16. Mironova, G. D. et al. Isolation and properties of Ca2+-transporting glycoprotein and peptide from beef heart mitochondria. J. Bioenerg. Biomembr. 14, 213–225 (1982)

    Article  CAS  Google Scholar 

  17. Panfili, E. et al. Specific inhibition of mitochondrial Ca2+ transport by antibodies directed to the Ca2+-binding glycoprotein. Nature 264, 185–186 (1976)

    Article  ADS  CAS  Google Scholar 

  18. Zazueta, C., Zafra, G., Vera, G., Sanchez, C. & Chavez, E. Advances in the purification of the mitochondrial Ca2+ uniporter using the labeled inhibitor 103Ru360. J. Bioenerg. Biomembr. 30, 489–498 (1998)

    Article  CAS  Google Scholar 

  19. Hajnóczky, G. et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40, 553–560 (2006)

    Article  Google Scholar 

  20. Sparagna, G. C., Gunter, K. K., Sheu, S. S. & Gunter, T. E. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J. Biol. Chem. 270, 27510–27515 (1995)

    Article  CAS  Google Scholar 

  21. Jiang, D., Zhao, L. & Clapham, D. E. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326, 144–147 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Carafoli, E. & Lehninger, A. L. A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem. J. 122, 681–690 (1971)

    Article  CAS  Google Scholar 

  23. Docampo, R. & Vercesi, A. E. Ca2+ transport by coupled Trypanosoma cruzi mitochondria in situ. J. Biol. Chem. 264, 108–111 (1989)

    CAS  PubMed  Google Scholar 

  24. Vercesi, A. E. & Docampo, R. Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ. Biochem. J. 284, 463–467 (1992)

    Article  CAS  Google Scholar 

  25. Balcavage, W. X., Lloyd, J. L., Mattoon, J. R., Ohnishi, T. & Scarpa, A. Cation movements and respiratory response in yeast mitochondria treated with high Ca2+ concentrations. Biochim. Biophys. Acta 305, 41–51 (1973)

    Article  CAS  Google Scholar 

  26. Uribe, S., Rangel, P. & Pardo, J. P. Interactions of calcium with yeast mitochondria. Cell Calcium 13, 211–217 (1992)

    Article  CAS  Google Scholar 

  27. Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008)

    Article  CAS  Google Scholar 

  28. Da Cruz, S. et al. Proteomic analysis of the mouse liver mitochondrial inner membrane. J. Biol. Chem. 278, 41566–41571 (2003)

    Article  CAS  Google Scholar 

  29. McDonald, T. et al. Expanding the subproteome of the inner mitochondria using protein separation technologies: one- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Mol. Cell. Proteomics 5, 2392–2411 (2006)

    Article  CAS  Google Scholar 

  30. Brini, M., Pinton, P., Pozzan, T. & Rizzuto, R. Targeted recombinant aequorins: tools for monitoring [Ca2+] in the various compartments of a living cell. Microsc. Res. Tech. 46, 380–389 (1999)

    Article  CAS  Google Scholar 

  31. Glitsch, M. D., Bakowski, D. & Parekh, A. B. Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J. 21, 6744–6754 (2002)

    Article  CAS  Google Scholar 

  32. Palmer, A. E. & Tsien, R. Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nature Protocols 1, 1057–1065 (2006)

    Article  CAS  Google Scholar 

  33. Murphy, A. N., Bredesen, D. E., Cortopassi, G., Wang, E. & Fiskum, G. Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc. Natl Acad. Sci. USA 93, 9893–9898 (1996)

    Article  ADS  CAS  Google Scholar 

  34. Aichberger, K. J. et al. Hom s 4, an IgE-reactive autoantigen belonging to a new subfamily of calcium-binding proteins, can induce Th cell type 1-mediated autoreactivity. J. Immunol. 175, 1286–1294 (2005)

    Article  CAS  Google Scholar 

  35. Forner, F. et al. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab. 10, 324–335 (2009)

    Article  CAS  Google Scholar 

  36. Jouaville, L. S., Pinton, P., Bastianutto, C., Rutter, G. A. & Rizzuto, R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc. Natl Acad. Sci. USA 96, 13807–13812 (1999)

    Article  ADS  CAS  Google Scholar 

  37. Territo, P. R., Mootha, V. K., French, S. A. & Balaban, R. S. Ca2+ activation of heart mitochondrial oxidative phosphorylation: role of the F0/F1-ATPase. Am. J. Physiol. Cell Physiol. 278, C423–C435 (2000)

    Article  CAS  Google Scholar 

  38. Bragadin, M., Pozzan, T. & Azzone, G. F. Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18, 5972–5978 (1979)

    Article  CAS  Google Scholar 

  39. Igbavboa, U. & Pfeiffer, D. R. EGTA inhibits reverse uniport-dependent Ca2+ release from uncoupled mitochondria. Possible regulation of the Ca2+ uniporter by a Ca2+ binding site on the cytoplasmic side of the inner membrane. J. Biol. Chem. 263, 1405–1412 (1988)

    CAS  PubMed  Google Scholar 

  40. Moreau, B., Nelson, C. & Parekh, A. B. Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration. Curr. Biol. 16, 1672–1677 (2006)

    Article  CAS  Google Scholar 

  41. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005)

    Article  ADS  CAS  Google Scholar 

  42. Lawrie, A. M., Rizzuto, R., Pozzan, T. & Simpson, A. W. A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J. Biol. Chem. 271, 10753–10759 (1996)

    Article  CAS  Google Scholar 

  43. Favaron, M. & Bernardi, P. Tissue-specific modulation of the mitochondrial calcium uniporter by magnesium ions. FEBS Lett. 183, 260–264 (1985)

    Article  CAS  Google Scholar 

  44. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006)

    Article  CAS  Google Scholar 

  45. Gohil, V. M. et al. Nutrient-sensitized screening for drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nature Biotechnol. 28, 249–255 (2010)

    Article  CAS  Google Scholar 

  46. Gaspers, L. D. & Thomas, A. P. Calcium-dependent activation of mitochondrial metabolism in mammalian cells. Methods 46, 224–232 (2008)

    Article  CAS  Google Scholar 

  47. Mootha, V. K. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640 (2003)

    Article  CAS  Google Scholar 

  48. Mootha, V. K. et al. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO J. 20, 661–671 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Grabarek, S. Silver and D. Root for advice; S. Calvo and A. Wolf for assistance with bioinformatics; P. Federico for technical assistance; and members of the Mootha Laboratory for valuable feedback. This work was supported by grants from the National Institutes of Health (GM084027) to A.E.P, TR2 GM08759 to J.E.M. and GM0077465, DK080261 awarded to V.K.M., and by an HHMI Early Career Physician Scientist Award to V.K.M.

Author information

Authors and Affiliations

Authors

Contributions

F.P. and V.K.M conceived of the project and its design. F.P., V.M.G., H.S.G., X.R.B., J.E.M. and A.E.P. performed experiments and data analysis. F.P. and V.K.M. wrote the manuscript.

Corresponding author

Correspondence to Vamsi K. Mootha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-3 with legends and Supplementary Table 1. (PDF 839 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perocchi, F., Gohil, V., Girgis, H. et al. MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake. Nature 467, 291–296 (2010). https://doi.org/10.1038/nature09358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09358

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing