Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opposing microRNA families regulate self-renewal in mouse embryonic stem cells

A Corrigendum to this article was published on 04 March 2010

Abstract

When embryonic stem cells (ESCs) differentiate, they must both silence the ESC self-renewal program and activate new tissue-specific programs. In the absence of DGCR8 (Dgcr8-/-), a protein required for microRNA (miRNA) biogenesis, mouse ESCs are unable to silence self-renewal. Here we show that the introduction of let-7 miRNAs—a family of miRNAs highly expressed in somatic cells—can suppress self-renewal in Dgcr8-/- but not wild-type ESCs. Introduction of ESC cell cycle regulating (ESCC) miRNAs into the Dgcr8-/- ESCs blocks the capacity of let-7 to suppress self-renewal. Profiling and bioinformatic analyses show that let-7 inhibits whereas ESCC miRNAs indirectly activate numerous self-renewal genes. Furthermore, inhibition of the let-7 family promotes de-differentiation of somatic cells to induced pluripotent stem cells. Together, these findings show how the ESCC and let-7 miRNAs act through common pathways to alternatively stabilize the self-renewing versus differentiated cell fates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The let-7 and ESCC miRNA families have opposing roles in regulating ESC self-renewal.
Figure 2: The let-7 and ESCC miRNAs suppress hundreds of transcripts by binding their ORF and/or 3′UTR.
Figure 3: Enrichment/depletion of transcription-factor-bound genes among miRNA-regulated transcripts.
Figure 4: Let-7c and miR-294 regulate Lin28, Sall4, c-Myc and N-Myc.
Figure 5: Inhibition of let-7 miRNAs promotes reprogramming to induced pluripotency.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Our microarray profiling data can be found at the Gene Expression Omnibus (GEO) database, under accession GSE18840.

References

  1. Babiarz, J. E. & Blelloch, R. Small RNAs — their biogenesis, regulation and function in embryonic stem cells. StemBook 10.3824/stembook.1.47.1. (2009)

  2. Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nature Genet. 38, S20–S24 (2006)

    Article  CAS  Google Scholar 

  3. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genet. 39, 380–385 (2007)

    Article  CAS  Google Scholar 

  4. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005)

    Article  CAS  Google Scholar 

  5. Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S. & Hannon, G. J. Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl Acad. Sci. USA 102, 12135–12140 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Wang, Y. et al. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genet. 40, 1478–1483 (2008)

    Article  CAS  Google Scholar 

  7. Judson, R., Babiarz, J. E., Venere, M. & Blelloch, R. Embryonic stem cell specific microRNAs promote induced pluripotency. Nature Biotech. 27, 459–461 (2009)

    Article  CAS  Google Scholar 

  8. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007)

    Article  CAS  Google Scholar 

  9. Chen, C. et al. Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm. Genome 18, 316–327 (2007)

    Article  CAS  Google Scholar 

  10. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987–993 (2008)

    Article  CAS  Google Scholar 

  11. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008)

    Article  CAS  Google Scholar 

  13. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008)

    Article  CAS  Google Scholar 

  14. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006)

    Article  CAS  Google Scholar 

  15. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008)

    Article  CAS  Google Scholar 

  16. Calabrese, J. M., Seila, A. C., Yeo, G. W. & Sharp, P. A. RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 18097–18102 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Benetti, R. et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature Struct. Mol. Biol. 15, 268–279 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Sinkkonen, L. et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nature Struct. Mol. Biol. 15, 259–267 (2008)

    Article  CAS  Google Scholar 

  19. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008)

    Article  CAS  Google Scholar 

  20. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet. 39, 673–677 (2007)

    Article  CAS  Google Scholar 

  21. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008)

    Article  CAS  Google Scholar 

  22. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008)

    Article  CAS  Google Scholar 

  23. Lim, C. Y. et al. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell 3, 543–554 (2008)

    Article  CAS  Google Scholar 

  24. Wu, Q. et al. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J. Biol. Chem. 281, 24090–24094 (2006)

    Article  CAS  Google Scholar 

  25. Zhang, J. et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Oct4. Nature Cell Biol. 8, 1114–1123 (2006)

    Article  CAS  Google Scholar 

  26. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009)

    Article  CAS  Google Scholar 

  27. Xu, B., Zhang, K. & Huang, Y. Lin28 modulates cell growth and associates with a subset of cell cycle regulator mRNAs in mouse embryonic stem cells. RNA 15, 357–361 (2009)

    Article  CAS  Google Scholar 

  28. Jones, M. R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature Cell Biol. 11, 1157–1163 (2009)

    Article  CAS  Google Scholar 

  29. Polesskaya, A. et al. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev. 21, 1125–1138 (2007)

    Article  CAS  Google Scholar 

  30. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007)

    Article  ADS  CAS  Google Scholar 

  31. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnol. 26, 101–106 (2008)

    Article  CAS  Google Scholar 

  32. Wernig, M., Meissner, A., Cassady, J. P. & Jaenisch, R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2, 10–12 (2008)

    Article  CAS  Google Scholar 

  33. Stadtfeld, M., Maherali, N., Breault, D. T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008)

    Article  CAS  Google Scholar 

  34. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008)

    Article  CAS  Google Scholar 

  35. Hochedlinger, K. & Plath, K. Epigenetic reprogramming and induced pluripotency. Development 136, 509–523 (2009)

    Article  CAS  Google Scholar 

  36. Cartwright, P. et al. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132, 885–896 (2005)

    Article  CAS  Google Scholar 

  37. Tay, Y. M. et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 26, 17–29 (2008)

    Article  CAS  Google Scholar 

  38. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008)

    Article  ADS  CAS  Google Scholar 

  39. Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A. & Kosik, K. S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658 (2009)

    Article  CAS  Google Scholar 

  40. Mendell, J. T. miRiad roles for the miR-17-92 cluster in development and Disease. Cell 133, 217–222 (2008)

    Article  CAS  Google Scholar 

  41. Büssing, I., Slack, F. J. & Grobhans, H. let-7 microRNAs in development, stem cells and cancer. Trends Mol. Med. 14, 400–409 (2008)

    Article  Google Scholar 

  42. Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M. & McKay, R. D. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102 (1996)

    Article  CAS  Google Scholar 

  43. Trumpp, A. et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768–773 (2001)

    Article  ADS  CAS  Google Scholar 

  44. Buehr, M. & Smith, A. Genesis of embryonic stem cells. Phil. Trans. R. Soc. Lond. B 358, 1397–1402 (2003)

    Article  CAS  Google Scholar 

  45. Shi, R. & Chiang, V. L. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519–525 (2005)

    Article  CAS  Google Scholar 

  46. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005)

    Article  CAS  Google Scholar 

  47. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002)

    Article  ADS  CAS  Google Scholar 

  48. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  Google Scholar 

  49. Blelloch, R., Venere, M., Yen, J. & Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Ramalho-Santos, S. Fisher, M. Conti and members of the Blelloch laboratory for critical reading of the manuscript. We would like to thank A. Amiet for let-7 and control inhibitors, M. Bishop for c-Myc floxed mice and A. Shenoy for ESC-derived neural progenitor cells cultures. Furthermore, we would like to acknowledge A. Olshen and R. Roy for their helpful advice concerning our statistical methods. This work was supported by funds to R.B. from the National Institutes of Health (NIH; K08 NS48118 and R01 NS057221), California Institute of Regenerative Medicine (CIRM; Seed Grant RS1-00161, New Faculty Award RN2-00906), the American Health Assistance Foundation (formerly Stem Cell Research Foundation), and the Pew Charitable Trust. C.M. and R.L.J. are supported by the National Science Foundation (NSF) graduate research fellowships.

Author Contributions C.M. contributed to Figs 14, 5b and Supplementary Figs 1–13 and 18. R.L.J. contributed to Fig. 5a and Supplementary Figs 13–17. C.M., R.L.J. and R.B. conceived the experiments, analysed the data, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Blelloch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-18 with Legends. (PDF 1424 kb)

Supplementary Table 1

This table contains microarray data with seed match information. (XLS 9141 kb)

Supplementary Table 2

This table contains pluripotency-associated genes and data used in Fig. S7. (XLS 19 kb)

Supplementary Table 3

This table contains microarray and seed match information for transcripts both up-regulated by miR-294 and down-regulated by let-7c. (XLS 25 kb)

Supplementary Table 4

This table contains qPCR primers. (XLS 21 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melton, C., Judson, R. & Blelloch, R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621–626 (2010). https://doi.org/10.1038/nature08725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08725

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing