Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism

Abstract

Pore-forming toxins (PFTs) are a class of potent virulence factors that convert from a soluble form to a membrane-integrated pore1. They exhibit their toxic effect either by destruction of the membrane permeability barrier or by delivery of toxic components through the pores. Among the group of bacterial PFTs are some of the most dangerous toxins, such as diphtheria and anthrax toxin. Examples of eukaryotic PFTs are perforin and the membrane-attack complex, proteins of the immune system2. PFTs can be subdivided into two classes, α-PFTs and β-PFTs, depending on the suspected mode of membrane integration, either by α-helical or β-sheet elements3. The only high-resolution structure of a transmembrane PFT pore is available for a β-PFT—α-haemolysin from Staphylococcus aureus4. Cytolysin A (ClyA, also known as HlyE), an α-PFT, is a cytolytic α-helical toxin responsible for the haemolytic phenotype of several Escherichia coli and Salmonella enterica strains5,6,7,8. ClyA is cytotoxic towards cultured mammalian cells, induces apoptosis of macrophages and promotes tissue pervasion9,10,11. Electron microscopic reconstructions demonstrated that the soluble monomer of ClyA12 must undergo large conformational changes to form the transmembrane pore13,14. Here we report the 3.3 Å crystal structure of the 400 kDa dodecameric transmembrane pore formed by ClyA. The tertiary structure of ClyA protomers in the pore is substantially different from that in the soluble monomer. The conversion involves more than half of all residues. It results in large rearrangements, up to 140 Å, of parts of the monomer, reorganization of the hydrophobic core, and transitions of β-sheets and loop regions to α-helices. The large extent of interdependent conformational changes indicates a sequential mechanism for membrane insertion and pore formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the ClyA pore.
Figure 2: Conformational differences between the soluble and the protomeric form.
Figure 3: Key residues for triggering the conformational switch.
Figure 4: Mechanism of pore formation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the ClyA-pore have been deposited in the PDB data bank under accession number 2WCD.

References

  1. Parker, M. W. & Feil, S. C. Pore-forming protein toxins: from structure to function. Prog. Biophys. Mol. Biol. 88, 91–142 (2005)

    Article  CAS  Google Scholar 

  2. Voskoboinik, I., Smyth, M. J. & Trapani, J. A. Perforin-mediated target-cell death and immune homeostasis. Nature Rev. Immunol. 6, 940–952 (2006)

    Article  CAS  Google Scholar 

  3. Gouaux, E. Channel-forming toxins: tales of transformation. Curr. Opin. Struct. Biol. 7, 566–573 (1997)

    Article  CAS  Google Scholar 

  4. Song, L. Z. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1866 (1996)

    Article  ADS  CAS  Google Scholar 

  5. del Castillo, F. J., Leal, S. C., Moreno, F. & delCastillo, I. The Escherichia coli K-12 sheA gene encodes a 34-kDa secreted haemolysin. Mol. Microbiol. 25, 107–115 (1997)

    Article  CAS  Google Scholar 

  6. Oscarsson, J. et al. Characterization of a pore-forming cytotoxin expressed by Salmonella enterica serovars Typhi and Paratyphi A. Infect. Immun. 70, 5759–5769 (2002)

    Article  CAS  Google Scholar 

  7. Ludwig, A., von Rhein, C., Bauer, S., Huttinger, C. & Goebel, W. Molecular analysis of cytolysin a (ClyA) in pathogenic Escherichia coli strains. J. Bacteriol. 186, 5311–5320 (2004)

    Article  CAS  Google Scholar 

  8. von Rhein, C. et al. ClyA cytolysin from Salmonella: distribution within the genus, regulation of expression by SlyA, and pore-forming characteristics. Int. J. Med. Microbiol. 299, 21–35 (2009)

    Article  CAS  Google Scholar 

  9. Oscarsson, J. et al. Molecular analysis of the cytolytic protein ClyA (SheA) from Escherichia coli . Mol. Microbiol. 32, 1226–1238 (1999)

    Article  CAS  Google Scholar 

  10. Lai, X. H. et al. Cytocidal and apoptotic effects of the ClyA protein from Escherichia coli on primary and cultured monocytes and macrophages. Infect. Immun. 68, 4363–4367 (2000)

    Article  CAS  Google Scholar 

  11. Fuentes, J. A., Villagra, N., Castillo-Ruiz, M. & Mora, G. C. The Salmonella Typhi hlyE gene plays a role in invasion of cultured epithelial cells and its functional transfer to S. Typhimurium promotes deep organ infection in mice. Res. Microbiol. 159, 279–287 (2008)

    Article  CAS  Google Scholar 

  12. Wallace, A. J. et al. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy. Cell 100, 265–276 (2000)

    Article  CAS  Google Scholar 

  13. Eifler, N. et al. Cytotoxin ClyA from Escherichia coli assembles to a 13-meric pore independent of its redox-state. EMBO J. 25, 2652–2661 (2006)

    Article  CAS  Google Scholar 

  14. Tzokov, S. B. et al. Structure of the hemolysin E (HlyE, ClyA, and SheA) channel in its membrane-bound form. J. Biol. Chem. 281, 23042–23049 (2006)

    Article  CAS  Google Scholar 

  15. Ludwig, A., Bauer, S., Benz, R., Bergmann, B. & Goebel, W. Analysis of the SlyA-controlled expression, subcellular localization and pore-forming activity of a 34 kDa haemolysin (ClyA) from Escherichia coli K-12. Mol. Microbiol. 31, 557–567 (1999)

    Article  CAS  Google Scholar 

  16. Shepard, L. A. et al. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an α-helical to β-sheet transition identified by fluorescence spectroscopy. Biochemistry 37, 14563–14574 (1998)

    Article  CAS  Google Scholar 

  17. Atkins, A. et al. Structure–function relationships of a novel bacterial toxin, hemolysin E: the role of αG. J. Biol. Chem. 275, 41150–41155 (2000)

    Article  CAS  Google Scholar 

  18. Earp, L. J., Delos, S. E., Park, H. E. & White, J. M. The many mechanisms of viral membrane fusion proteins. Curr. Top. Microbiol. Immunol. 285, 25–66 (2005)

    CAS  PubMed  Google Scholar 

  19. Wyborn, N. R. et al. Properties of haemolysin E (HlyE) from a pathogenic Escherichia coli avian isolate and studies of HlyE export. Microbiology 150, 1495–1505 (2004)

    Article  CAS  Google Scholar 

  20. Tilley, S. J., Orlova, E. V., Gilbert, R. J. C., Andrew, P. W. & Saibil, H. R. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121, 247–256 (2005)

    Article  CAS  Google Scholar 

  21. Kawate, T. & Gouaux, E. Arresting and releasing Staphylococcal α-hemolysin at intermediate stages of pore formation by engineered disulfide bonds. Protein Sci. 12, 997–1006 (2003)

    Article  CAS  Google Scholar 

  22. Engelman, D. M. & Steitz, T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23, 411–422 (1981)

    Article  CAS  Google Scholar 

  23. Farsad, K. & De Camilli, P. Mechanisms of membrane deformation. Curr. Opin. Cell Biol. 15, 372–381 (2003)

    Article  CAS  Google Scholar 

  24. Wai, S. N. et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115, 25–35 (2003)

    Article  CAS  Google Scholar 

  25. Olson, R., Nariya, H., Yokota, K., Kamio, Y. & Gouaux, E. Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nature Struct. Biol. 6, 134–140 (1999)

    Article  CAS  Google Scholar 

  26. Hunt, S. et al. The formation and structure of Escherichia coli K-12 haemolysin E pores. Microbiology 154, 633–642 (2008)

    Article  CAS  Google Scholar 

  27. Carr, C. M., Kim, P. S. & Spring-Loaded, A. Mechanism for the conformational change of influenza hemagglutinin. Cell 73, 823–832 (1993)

    Article  CAS  Google Scholar 

  28. Colman, P. M. & Lawrence, M. C. The structural biology of type I viral membrane fusion. Nature Rev. Mol. Cell Biol. 4, 309–319 (2003)

    Article  CAS  Google Scholar 

  29. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  30. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  31. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  32. Collaborative Computational Project Number 4 The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  33. Evans, P. R. Scala. in Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 33, 22–24 (1997)

    Google Scholar 

  34. French, S. & Wilson, K. On the treatment of negative intensity observations. Acta Crystallogr. A 34, 517–525 (1978)

    Article  ADS  Google Scholar 

  35. Tong, L. & Rossmann, M. G. Rotation function calculations with GLRF program. Meth. Enzymol. 276, 594–611 (1997)

    Article  CAS  Google Scholar 

  36. Pape, T. & Schneider, T. R. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Cryst. 37, 843–844 (2004)

    Article  CAS  Google Scholar 

  37. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  Google Scholar 

  38. delaFortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enzymol. 276, 472–494 (1997)

    Article  CAS  Google Scholar 

  39. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  40. Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000)

    Article  CAS  Google Scholar 

  41. Jones, T. A. A graphics model building and refinement system for macromolecules. J. Appl. Cryst. 11, 268–272 (1978)

    Article  CAS  Google Scholar 

  42. Mccoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  43. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D 62, 1002–1011 (2006)

    Article  Google Scholar 

  44. Painter, J. & Merritt, E. A. TLSMD web server for the generation of multi-group TLS models. J. Appl. Cryst. 39, 109–111 (2006)

    Article  CAS  Google Scholar 

  45. Laskowski, R. A., Macarthur, M. W., Moss, D. S. & Thornton, J. M. Procheck — a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  46. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007)

    Article  CAS  Google Scholar 

  47. DeLano, W. L. The PyMOL Molecular Graphics Systemhttp://www.pymol.org/〉 (2008)

    Google Scholar 

Download references

Acknowledgements

We thank B. Blattmann for help with initial screening, N. Eifler and A. Engel for providing electron microscopy maps, D. Boehringer for sample characterization, and H. Fäh-Rechsteiner for technical assistance. We also acknowledge the staff of X06SA at the Swiss Light Source for developing an excellent beamline and support with data collection, T. C. Terwilliger for his support using RESOLVE, and M. Leibundgut and D. Boehringer for critically reading the manuscript. This work was supported by the Swiss National Science Foundation (SNSF) and the National Center of Excellence in Research (NCCR) Structural Biology program of the SNSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Ban.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary Figures 1-8 with Legends and Supplementary References. (PDF 6719 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, M., Grauschopf, U., Maier, T. et al. The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature 459, 726–730 (2009). https://doi.org/10.1038/nature08026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08026

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing