Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A GaAs polariton light-emitting diode operating near room temperature

Abstract

The increasing ability to control light–matter interactions at the nanometre scale has improved the performance of semiconductor lasers in the past decade. The ultimate optimization is realized in semiconductor microcavities, in which strong coupling between quantum-well excitons and cavity photons gives rise to hybrid half-light/half-matter polariton quasiparticles1. The unique properties of polaritons—such as stimulated scattering2,3, parametric amplification4,5,6, lasing7,8,9,10, condensation11,12,13 and superfluidity14,15—are believed to provide the basis for a new generation of polariton emitters and semiconductor lasers. Until now, polariton lasing and nonlinearities have only been demonstrated in optical experiments, which have shown the potential to reduce lasing thresholds by two orders of magnitude compared to conventional semiconductor lasers16. Here we report an experimental realization of an electrically pumped semiconductor polariton light-emitting device, which emits directly from polariton states at a temperature of 235 K. Polariton electroluminescence data reveal characteristic anticrossing between exciton and cavity modes, a clear signature of the strong coupling regime. These findings represent a substantial step towards the realization of ultra-efficient polaritonic devices with unprecedented characteristics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic sketch of the polariton microcavity LED.
Figure 2: Polariton electroluminescence emission versus temperature.
Figure 3: Angle-dependent polariton electroluminescence.
Figure 4: Current-dependent polariton electroluminescence.

Similar content being viewed by others

References

  1. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992)

    Article  CAS  ADS  Google Scholar 

  2. Dang, L. S., Heger, D., André, R., Bœuf, F. & Romestain, R. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998)

    Article  CAS  ADS  Google Scholar 

  3. Senellart, P., Bloch, J., Sermage, B. & Marzin, J. Y. Microcavity polariton depopulation as evidence for stimulated scattering. Phys. Rev. B 62, R16263–R16266 (2000)

    Article  CAS  ADS  Google Scholar 

  4. Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000)

    Article  CAS  ADS  Google Scholar 

  5. Ciuti, C., Schwendimann, P., Deveaud, B. & Quattropani, A. Theory of the angle-resonant polariton amplifier. Phys. Rev. B 62, R4825–R4828 (2000)

    Article  CAS  ADS  Google Scholar 

  6. Saba, M. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001)

    Article  CAS  ADS  Google Scholar 

  7. Porras, D., Ciuti, C., Baumberg, J. J. & Tejedor, C. Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities. Phys. Rev. B 66, 085304 (2002)

    Article  ADS  Google Scholar 

  8. Malpuech, G., Di Carlo, A. & Kavokin, A. Room-temperature polariton lasers based GaN microcavities. Appl. Phys. Lett. 81, 412–414 (2002)

    Article  CAS  ADS  Google Scholar 

  9. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006)

    Article  CAS  ADS  Google Scholar 

  10. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007)

    Article  CAS  ADS  Google Scholar 

  11. Deng, H. et al. Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97, 146402 (2006)

    Article  ADS  Google Scholar 

  12. Butov, L. A polariton laser. Nature 447, 540–541 (2007)

    Article  CAS  ADS  Google Scholar 

  13. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose-Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007)

    Article  CAS  ADS  Google Scholar 

  14. Carussotto, I. & Ciuti, C. Probing microcavity polariton superfluidity through resonant Rayleigh scattering. Phys. Rev. Lett. 93, 166401 (2004)

    Article  ADS  Google Scholar 

  15. Kavokin, A., Malpuech, G. & Laussy, F. P. Polariton laser and polariton superfluidity in microcavities. Phys. Lett. A 306, 187–199 (2003)

    Article  CAS  ADS  Google Scholar 

  16. Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003)

    Article  CAS  ADS  Google Scholar 

  17. Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996)

    Article  CAS  ADS  Google Scholar 

  18. Carlin, J. F. et al. Design and characterization of top-emitting microcavity light-emitting diodes. Semicond. Sci. Technol. 15, 145–154 (2000)

    Article  CAS  ADS  Google Scholar 

  19. Tischler, J. R., Bradley, M. S., Bulovic, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005)

    Article  ADS  Google Scholar 

  20. Sapienza, L. et al. Photovoltaic probe of cavity polaritons in a quantum cascade structure. Appl. Phys. Lett. 90, 201101 (2007)

    Article  ADS  Google Scholar 

  21. Sapienza, L. et al. Electrically injected cavity polaritons. Phys. Rev. Lett. 100, 136806 (2008)

    Article  CAS  ADS  Google Scholar 

  22. Tartakovskii, A. I. et al. Relaxation bottleneck and its suppression in semiconductor microcavities. Phys. Rev. B 62, R2283–R2286 (2000)

    Article  CAS  ADS  Google Scholar 

  23. Bajoni, D. et al. Polariton light-emitting diode in a GaAs-based microcavity. Phys. Rev. B 77, 113303 (2008)

    Article  ADS  Google Scholar 

  24. Khalifa, A. A., Love, A. P. D., Krizhanovskii, D. N., Skolnick, M. S. & Roberts, J. S. Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92, 061107 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support by the PENED projects 03EΔ841 and 03EΔ816 (funded 25% by national funds and 75% by EC) acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Savvidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsintzos, S., Pelekanos, N., Konstantinidis, G. et al. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008). https://doi.org/10.1038/nature06979

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06979

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing