Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new class of anthelmintics effective against drug-resistant nematodes

Abstract

Anthelmintic resistance in human and animal pathogenic helminths has been spreading in prevalence and severity to a point where multidrug resistance against the three major classes of anthelmintics—the benzimidazoles, imidazothiazoles and macrocyclic lactones—has become a global phenomenon in gastrointestinal nematodes of farm animals. Hence, there is an urgent need for an anthelmintic with a new mode of action. Here we report the discovery of the amino-acetonitrile derivatives (AADs) as a new chemical class of synthetic anthelmintics and describe the development of drug candidates that are efficacious against various species of livestock-pathogenic nematodes. These drug candidates seem to have a novel mode of action involving a unique, nematode-specific clade of acetylcholine receptor subunits. The AADs are well tolerated and of low toxicity to mammals, and overcome existing resistances to the currently available anthelmintics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino-acetonitrile derivatives (AADs).
Figure 2: Selected AADs, their structures and the corresponding anthelmintic efficacies in vitro and in vivo.
Figure 3: Pharmacokinetics of AADs.
Figure 4: Involvement of nAChRs in AAD resistance.

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

Hcdes-2H sequences have been deposited in GenBank under accession numbers EF659746, EF659747, EF659748, EF659749, EF659750, EF659751, EF659752, EF659753, EF659754, EF659755, EF659756, EF659757, EF659758, EF659759, EF659760.

References

  1. De Clercq, D. et al. Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. Am. J. Trop. Med. Hyg. 57, 25–30 (1997)

    Article  CAS  Google Scholar 

  2. Geerts, S. & Gryseels, B. Drug resistance in human helminths: current situation and lessons from livestock. Clin. Microbiol. Rev. 13, 207–222 (2000)

    Article  CAS  Google Scholar 

  3. Awadzi, K. et al. An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann. Trop. Med. Parasitol. 98, 231–249 (2004)

    Article  CAS  Google Scholar 

  4. Osei-Atweneboana, M. Y., Eng, J. K., Boakye, D. A., Gyapong, J. O. & Prichard, R. K. Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet 369, 2021–2029 (2007)

    Article  Google Scholar 

  5. Waller, P. J. Anthelmintic resistance. Vet. Parasitol. 72, 391–412 (1997)

    Article  CAS  Google Scholar 

  6. Jackson, F. & Coop, R. L. The development of anthelmintic resistance in sheep nematodes. Parasitology 120 (suppl.). S95–S107 (2000)

    Article  Google Scholar 

  7. Kaplan, R. M. Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol. 20, 477–481 (2004)

    Article  CAS  Google Scholar 

  8. Besier, B. New anthelmintics for livestock: the time is right. Trends Parasitol. 23, 21–24 (2007)

    Article  CAS  Google Scholar 

  9. Wolstenholme, A. J., Fairweather, I., Prichard, R., von Samson-Himmelstjerna, G. & Sangster, N. C. Drug resistance in veterinary helminths. Trends Parasitol. 20, 469–476 (2004)

    Article  CAS  Google Scholar 

  10. Ruaud, A. F. & Bessereau, J. L. Activation of nicotinic receptors uncouples a developmental timer from the molting timer in Caenorhabditis elegans. Development 133, 2211–2222 (2006)

    Article  CAS  Google Scholar 

  11. Rand, J. B. Acetylcholine. In WormBook (ed. The C. elegans Research Community) 10.1895/wormbook.1.131 1 〈http://www.wormbook.org〉 (30 January 2007)

    Google Scholar 

  12. Fleming, J. T. et al. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J. Neurosci. 17, 5843–5857 (1997)

    Article  CAS  Google Scholar 

  13. Culetto, E. et al. The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor α subunit. J. Biol. Chem. 279, 42476–42483 (2004)

    Article  CAS  Google Scholar 

  14. Mongan, N. P., Jones, A. K., Smith, G. R., Sansom, M. S. & Sattelle, D. B. Novel α7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci. 11, 1162–1171 (2002)

    Article  CAS  Google Scholar 

  15. Treinin, M., Gillo, B., Liebman, L. & Chalfie, M. Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon. Proc. Natl Acad. Sci. USA 95, 15492–15495 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Wood, I. B. et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition of guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine, ovine, caprine). Vet. Parasitol. 58, 181–213 (1995)

    Article  CAS  Google Scholar 

  17. Boisvenue, R. J., Brandt, M. C., Galloway, R. B. & Hendrix, J. C. In vitro activity of various anthelmintic compounds against Haemonchus contortus larvae. Vet. Parasitol. 13, 341–347 (1983)

    Article  CAS  Google Scholar 

  18. Anderson, P. Mutagenesis. Methods Cell Biol. 48, 31–58 (1995)

    Article  CAS  Google Scholar 

  19. Wicks, S. R., Yeh, R. T., Gish, W. R., Waterston, R. H. & Plasterk, R. H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nature Genet. 28, 160–164 (2001)

    Article  CAS  Google Scholar 

  20. van Wyk, J. A. & Malan, F. S. Resistance of field strains of Haemonchus contortus to ivermectin, closantel, rafoxanide and the benzimidazoles in South Africa. Vet. Rec. 123, 226–228 (1988)

    Article  CAS  Google Scholar 

  21. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004)

    Article  Google Scholar 

  22. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  CAS  Google Scholar 

  23. Jones, A. K., Davis, P., Hodgkin, J. & Sattelle, D. B. The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature. Invert. Neurosci. 7, 129–131 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Schroeder, E. Pradervand, S. Mulhauser, J. Lambert, D. Mosimann and A. Kazimi for technical assistance; C. Johnson for providing an ivermectin-resistant C. elegans strain; and C. Kempter for support on chemical characterization of AADs. We also thank S. Nanchen, B. Hosking, A. Redpath and R. Steiger for thorough review of and comments on the manuscript. P.M. is supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Kaminsky.

Ethics declarations

Competing interests

The value of patent WO2002049641 may be affected by publication of the article. Concerning pending patent applications, the authors declare that they are bound by confidentiality agreements that prevent them from disclosing their financial interest in this work.

Supplementary information

Supplementary Information

The file contains Supplementary Methods with details on the chemical synthesis of amino-acetonitrile derivatives (AADs); Supplementary Data with chiral resolution of AAD-1470 and biological activity of the enantiomers; Supplementary Figures S1-S2 illustrating NMR spectra of AADs (Figure S1) and multiple alignment of nicotinic acetylcholine receptor alpha-subunits (Figure S2); and Supplementary Tables S1-S3 with pharmacological (Tables S1 and S3) and genetic (Table S2) data of Caenorhabditis elegans mutants. (PDF 698 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaminsky, R., Ducray, P., Jung, M. et al. A new class of anthelmintics effective against drug-resistant nematodes. Nature 452, 176–180 (2008). https://doi.org/10.1038/nature06722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06722

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing