Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome evolution in yeasts

Abstract

Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar lifestyle and distinct sexual and physiological properties, provide a unique opportunity to explore such mechanisms. We present here the complete, assembled genome sequences of four yeast species, selected to represent a broad evolutionary range within a single eukaryotic phylum, that after analysis proved to be molecularly as diverse as the entire phylum of chordates. A total of approximately 24,200 novel genes were identified, the translation products of which were classified together with Saccharomyces cerevisiae proteins into about 4,700 families, forming the basis for interspecific comparisons. Analysis of chromosome maps and genome redundancies reveal that the different yeast lineages have evolved through a marked interplay between several distinct molecular mechanisms, including tandem gene repeat formation, segmental duplication, a massive genome duplication and extensive gene loss.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall genome redundancy as deduced from protein families.
Figure 2: Distribution of the percentage identity between pairs of homologous proteins.
Figure 3: Tandem gene repeats.
Figure 4: Detection of ancient duplicated blocks in each yeast genome.
Figure 5: Conservation of synteny between yeast genomes.
Figure 6: Major evolutionary events in the genomes of hemiascomycetes.

Similar content being viewed by others

References

  1. Goffeau, A. et al. Life with 6000 genes. Science 274, 563–567 (1996)

    Article  Google Scholar 

  2. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998)

    Article  ADS  Google Scholar 

  3. Amanatides, P. G. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000)

    Article  Google Scholar 

  4. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000)

    Article  ADS  Google Scholar 

  5. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  Google Scholar 

  6. Holt, R. A. et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129–149 (2002)

    Article  ADS  CAS  Google Scholar 

  7. Aparicio, S. et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297, 1301–1310 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Stein, L. D. et al. The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics. PLoS Biol. 1, 166–192 (2003)

    Article  CAS  Google Scholar 

  9. Stephen, A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002)

    Article  ADS  Google Scholar 

  10. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Galagan, J. E. et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 857–868 (2003)

    Article  ADS  Google Scholar 

  12. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Souciet, J. L. et al. Genomic exploration of the hemiascomycetous yeasts. FEBS Lett. 487, 3–147 (2000)

    Article  Google Scholar 

  14. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Cliften, P. et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71–76 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Dietrich, F. S. et al. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304–307 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Kellis, M., Birren, B. W. & Lander, E. S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Marck, C. & Grosjean, H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8, 1189–1232 (2002)

    Article  CAS  Google Scholar 

  19. Soonhammer, E. L. & Koonin, E. V. Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet. 18, 619–620 (2002)

    Article  Google Scholar 

  20. Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)

    Article  Google Scholar 

  21. Dehal, P. et al. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Brown, C. J., Todd, K. M. & Rosenzweig, R. F. Multiple duplications of yeast hexose transport gene in response to selection in a glucose-limited environment. Mol. Biol. Evol. 15, 931–942 (1998)

    Article  CAS  Google Scholar 

  23. Lalo, D., Stettler, S., Mariotte, S., Slonimski, P. P. & Thuriaux, P. Two yeast chromosomes are related by a fossil duplication of their centromeric regions. C. R. Acad. Sci. III 316, 367–373 (1993)

    CAS  PubMed  Google Scholar 

  24. Wolfe, K. H. & Shields, D. C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Wong, S., Butler, G. & Wolfe, K. H. Gene order evolution and paleopolyploidy in hemiascomycete yeasts. Proc. Natl Acad. Sci. USA 99, 9272–9277 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Koszul, R., Caburet, S., Dujon, B. & Fischer, G. Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J. 23, 234–243 (2004)

    Article  CAS  Google Scholar 

  27. Fischer, G., Neuveglise, C., Durrens, P., Gaillardin, C. & Dujon, B. Evolution of gene order in the genomes of two related yeast species. Genome Res. 11, 2009–2019 (2001)

    Article  CAS  Google Scholar 

  28. Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Kurtzman, C. P. & Fell, J. W. The Yeasts, a Taxonomic Study 4th edn (Elsevier, Amsterdam, 1998)

    Google Scholar 

  30. Frangeul, L. et al. CAAT-Box. Contigs-Assembly and Annotation Tool-Box for genome sequencing projects. Bioinformatics 20, 790–797 (2004)

    Article  CAS  Google Scholar 

  31. Bon, E. et al. Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res. 31, 1121–1135 (2003)

    Article  CAS  Google Scholar 

  32. Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002)

    Article  CAS  Google Scholar 

  33. Vandepoele, K., Saeys, Y., Simillion, C., Raes, J. & Van De Peer, Y. The automatic detection of homologous regions (ADHoRe) and its application to microcolinearity between Arabidopsis and rice. Genome Res. 12, 1792–1801 (2002)

    Article  CAS  Google Scholar 

  34. Bader, G. D., Betel, D. & Hogue, C. W. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 31, 248–250 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Tichit, S. Duthoy, S. Ferry and N. Zidane for technical assistance; A. Louis for help and expertise in the use of the INFOBIOGEN computational facilities; O. Jaillon, H. Roest-Crollius and their colleagues for sharing unpublished results on Tetraodon negroviridis; and A. Goffeau, H. Feldmann, A. Nicolas, N. Huu-Vang, J.-P. Latgé, I. Moszer and M. Vergassola for discussions and advice. This work was supported by the Consortium National de Recherche en Génomique (to Génoscope and to Institut Pasteur Génopole), the CNRS (GDR 2354, Génolevures sequencing consortium) and the ‘Conseil Régional d'Aquitaine’. B.D. is a member of Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernard Dujon or Jean-Luc Souciet.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table S1

List of centromeres for C. glabrata, K. lactis and Y. lipolytica with coordinates, sequences and flanking genes. (PDF 141 kb)

Supplementary Table S2

List of telomeric repeats and proteins of the telomerase complex of C. glabrata, K. lactis, D. hansenii and Y. lipolytica. (PDF 70 kb)

Supplementary Table S3

Full table of codon usage and number of tRNA genes in S. cerevisiae, C. glabrata, K. lactis, D. hansenii and Y. lipolytica. (PDF 147 kb)

Supplementary Table S4

Full list of introns in tRNA genes of S. cerevisiae, C. glabrata, K. lactis, D. hansenii and Y. lipolytica with their size (in nucleotides). (PDF 102 kb)

Supplementary Table S5

List of potentially co-transcribed tRNA gene pairs in C. glabrata, K. lactis, D. hansenii and Y. lipolytica with nature of gene involved, size of intergene and number of occurences in each genome. (PDF 63 kb)

Supplementary Table S6

List of all identified non-coding RNA genes in C. glabrata, K. lactis, D. hansenii and Y. lipolytica, with type, size of molecules, gene name, and chromosomal location. (PDF 70 kb)

Supplementary Figure S7

Phylogenetic tree of Hemisaacomycete yeast species derived from 25S rDNA sequences. (PDF 91 kb)

Supplementary Table S8

Full list of genes encountered in tandem arrays in any of the yeasts S. cerevisiae, C. glabrata, K. lactis, D. hansenii and Y. lipolytica with indication of gene number, protein family number and functional annotation. (PDF 137 kb)

Supplementary Table S9

A list of all recognized ancient duplication blocks in the genome of C. glabrata, with the names of paralogous gene duplicates involved, their map coordinates, and the corresponding ancient duplication blocks in the genome of S. cerevisiae, when coinciding. (PDF 82 kb)

Supplementary Table S10

List of S. cerevisiae genes with their functional annotation which are specifically absent in only one of the four yeast species C. glabrata, K. lactis, D. hansenii and Y. lipolytica (but present in the three others). (PDF 111 kb)

Supplementary Table S11

List of genes identified in the genomes of K. lactis, D. hansenii and Y. lipolytica, without homolog in other eucaryotes, including other yeasts and that probably correspond to horizontal gene transfer from bacterial origin. (PDF 108 kb)

Supplementary Methods S12

Details the successive steps followed in the classifiaction of the 34,824 proteins of S. cerevisiae, C. glabrata, K. lactis, D. hansenii and Y. lipolytica. (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dujon, B., Sherman, D., Fischer, G. et al. Genome evolution in yeasts. Nature 430, 35–44 (2004). https://doi.org/10.1038/nature02579

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02579

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing